

User’s Guide

Center for Bioinformatics

This is a U.S. Government work. March 30, 2008

CAGRID 1.2

 ii

Model caBIG™ Open Source Software License

v.2

Release Date: January 7, 2008

Copyright Notice. Copyright 2008 The Ohio State University Research Foundation
(OSURF), Argonne National Labs (ANL), SemanticBits LLC (SemanticBits), and
Ekagra Software Technologies Ltd. (Ekagra) (“caBIG™ Participant”). The caGrid 1.2
software was created with NCI funding and is part of the caBIG™ initiative. The
software subject to this notice and license includes both human readable source
code form and machine readable, binary, object code form (the “caBIG™
Software”).

This caBIG™ Software License (the “License”) is between caBIG™ Participant and
You. “You (or “Your”) shall mean a person or an entity, and all other entities that
control, are controlled by, or are under common control with the entity. “Control” for
purposes of this definition means (i) the direct or indirect power to cause the
direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

License. Provided that You agree to the conditions described below, caBIG™
Participant grants You a non-exclusive, worldwide, perpetual, fully-paid-up, no-
charge, irrevocable, transferable and royalty-free right and license in its rights in the
caBIG™ Software, including any copyright or patent rights therein, to (i) use, install,
disclose, access, operate, execute, reproduce, copy, modify, translate, market,
publicly display, publicly perform, and prepare derivative works of the caBIG™
Software in any manner and for any purpose, and to have or permit others to do so;
(ii) make, have made, use, practice, sell, and offer for sale, import, and/or otherwise
dispose of caBIG™ Software (or portions thereof); (iii) distribute and have
distributed to and by third parties the caBIG™ Software and any modifications and
derivative works thereof; and (iv) sublicense the foregoing rights set out in (i), (ii)
and (iii) to third parties, including the right to license such rights to further third
parties. For sake of clarity, and not by way of limitation, caBIG™ Participant shall
have no right of accounting or right of payment from You or Your sublicensees for
the rights granted under this License. This License is granted at no charge to You.
Your downloading, copying, modifying, displaying, distributing or use of caBIG™
Software constitutes acceptance of all of the terms and conditions of this
Agreement. If you do not agree to such terms and conditions, you have no right to
download, copy, modify, display, distribute or use the caBIG™ Software.

1. Your redistributions of the source code for the caBIG™ Software must retain
the above copyright notice, this list of conditions and the disclaimer and
limitation of liability of Article 6 below. Your redistributions in object code
form must reproduce the above copyright notice, this list of conditions and
the disclaimer of Article 6 in the documentation and/or other materials
provided with the distribution, if any.

2. Your end-user documentation included with the redistribution, if any, must
include the following acknowledgment: “This product includes software
developed by the Ohio State University Research Foundation (OSURF),
Argonne National Labs (ANL), SemanticBits LLC (SemanticBits), and Ekagra
Software Technologies Ltd. (Ekagra).” If You do not include such end-user

 iii

documentation, You shall include this acknowledgment in the caBIG™
Software itself, wherever such third-party acknowledgments normally
appear.

3. You may not use the names “The Ohio State University Research
Foundation”, "OSURF", “Argonne National Labs”, “ANL”, “SemanticBits
LLC”, "SemanticBits", “Ekagra Software Technologies Ltd.”, “Ekagra”, “The
National Cancer Institute”, “NCI”, “Cancer Bioinformatics Grid” or “caBIG™”
to endorse or promote products derived from this caBIG™ Software. This
License does not authorize You to use any trademarks, service marks, trade
names, logos or product names of either caBIG™ Participant, NCI or
caBIG™, except as required to comply with the terms of this License.

4. For sake of clarity, and not by way of limitation, You may incorporate this
caBIG™ Software into Your proprietary programs and into any third party
proprietary programs. However, if You incorporate the caBIG™ Software into
third party proprietary programs, You agree that You are solely responsible
for obtaining any permission from such third parties required to incorporate
the caBIG™ Software into such third party proprietary programs and for
informing Your sublicensees, including without limitation Your end-users, of
their obligation to secure any required permissions from such third parties
before incorporating the caBIG™ Software into such third party proprietary
software programs. In the event that You fail to obtain such permissions,
You agree to indemnify caBIG™ Participant for any claims against caBIG™
Participant by such third parties, except to the extent prohibited by law,
resulting from Your failure to obtain such permissions.

5. For sake of clarity, and not by way of limitation, You may add Your own
copyright statement to Your modifications and to the derivative works, and
You may provide additional or different license terms and conditions in Your
sublicenses of modifications of the caBIG™ Software, or any derivative
works of the caBIG™ Software as a whole, provided Your use, reproduction,
and distribution of the Work otherwise complies with the conditions stated in
this License.

6. THIS caBIG™ SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED
OR IMPLIED WARRANTIES (INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT
AND FITNESS FOR A PARTICULAR PURPOSE) ARE DISCLAIMED. IN
NO EVENT SHALL THE OHIO STATE UNIVERSITY RESEARCH
FOUNDATION (OSURF), ARGONNE NATIONAL LABS (ANL),
SEMANTICBITS LLC (SEMANTICBITS), AND EKAGRA SOFTWARE
TECHNOLOGIES LTD. (EKAGRA) OR ITS AFFILIATES BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
caBIG™ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Revision History
The following is the revision history for this document.

Date Version Description Revised By

3/29/2008 1.2.2 WebSSO Changes Kunal Modi

3/23/2008 1.2.1 Formatted and Edited to Match NCI
Documentation Standards

Carolyn Klinger

3/17/2008 1.2.0 Updated Release: caGrid 1.2 Scott Oster

9/20/2007 1.1 Updated Release: caGrid 1.1 Scott Oster

12/18/2006 1.0 Initial Release: caGrid 1.0 Scott Oster

 vii

Contents
Revision History .. v

Contents .. vii

Figures ... xi

Tables ... xiii

About This Guide .. 1
Purpose ... 1
Release Schedule ... 1
Audience ... 1
Topics Covered ... 1
Document Text Conventions .. 2
Credits and Resources ... 3

Chapter 1 Overview of caGrid User Roles .. 5
Overview ... 5
Relevant Documents .. 5
User Role Definitions .. 5

Service Developer .. 5
Client Application Developer .. 6
Service Administrator ... 6

Chapter 2 Developing caGrid Services .. 9
Preamble ... 9
Overview ... 9

Software Prerequisites ... 10
Changes from Introduce 1.1 ... 10

Introduce Graphical Development Environment ... 11
Service Creation ... 12
Service Modification ... 13
Deployment .. 22
Undeployment .. 23
Software Updates ... 24
Service Migration .. 24

Chapter 3 Creating caGrid Data Services .. 26
Introduction ... 26
Functionality .. 26
User Interface Components and Details ... 27

Creation Interface ... 27
Styles and Options ... 28
Service Modification Interface .. 28

Chapter 4 Developing Client Applications ... 35
Overview ... 35
caGrid Client APIs .. 36

Secure Communication .. 36
Definition of an EPR ... 37
Obtaining an EPR for a Service ... 37
Inspecting a Service’s Metadata .. 40
Invoking Operations on a Service .. 41

caGrid 1.2 User’s Guide

 viii

Client Application Case Study: caArray .. 42
caArray Discovery Example ... 42
caArray Metadata Example .. 42
caArray Invocation Example .. 43

Chapter 5 caGrid Security ... 45
Overview ... 45
GAARDS Administration User Interface ... 48
Grid User and Host Management ... 48

Registration Authorities .. 49
Account and Certificate Creation ... 50
Grid Proxy Certificate Creation .. 51
Host Certificate Creation .. 51
Installing and Configuring Dorian ... 52
Registering for an Account with the Dorian IdP ... 56
Logging onto the Grid... 57
Managing Grid Credentials .. 59
Requesting and Managing Host Credentials ... 60
Administrating Dorian ... 62

Grid Trust Service (GTS) .. 76
GTS and the Globus Toolkit ... 78
Installation and Configuration ... 80

GTS Administration .. 86
Syncing with the Trust Fabric ... 102

Grid Grouper ... 105
Installation and Configuration .. 106
Administrating Grid Grouper .. 112

Credential Delegation ... 125
Installation and Configuration .. 126
CDS Properties .. 128
Delegating a Credential.. 129
Get a Delegated Credential Using the GAARDS UI .. 133
Finding Credentials that You Delegated .. 134
Administrating the CDS .. 136

Authentication Management ... 139
Configuring the Service .. 140
Deploying to the Container .. 140
Configuring the CSM .. 141

Authorization Management ... 142
JAAS Configuration .. 143
ApplicationSecurityConfig.xml ... 143
hibernate.cfg.xml .. 144
Web Applications Classpath .. 144
CSM Administration ... 146

WebSSO ... 150
Components of WebSSO Solution ... 150
Single Sign On Work Flow ... 151
Installation/Configuration of WebSSO Components .. 152
Accessing WebSSO Attributes from the Client Application ... 153
WebSSO Login Page ... 154

Chapter 6 Workflow Services ... 155
Introduction ... 155
The Business Process Execution Language (BPEL) ... 155
Creating a Sample Workflow Using Test Services ... 156
Installing Test Services ... 156

Contents

 ix

Configuring and Running a Workflow ... 156
Launching the Workflow Submission GUI .. 157
Submitting a Workflow.. 157
Submitting a Workflow.. 159

Executing a Workflow ... 160
Querying for Status .. 160
Getting Workflow Output .. 160
Getting Detailed Status .. 161
Terminating a Workflow.. 162
Pausing and Resuming a Workflow ... 162

Workflow Client Overview ... 162
Getting Started with the Workflow Client .. 163

Adding GT4 processor Plug-in ... 163
Adding GT4 Scavenger .. 163

Workflow Modeling and Execution ... 165
Workflow Modeling ... 165
Workflow Execution .. 173

Scientific Publications ... 179
Technical Manuals/Articles ... 182
caBIG Material .. 183
caCORE Material .. 183

Index ... 187

 xi

Figures
Figure 2-1: Introduce Overall Service Creation Process ... 9
Figure 2-2: The Introduce Graphical Development Environment (GDE)11
Figure 2-3: Introduce GDE Service Creation Component ..12
Figure 4: Introduce GDE Service Modification Component ..13
Figure 2-5: Introduce GDE Services View ...16
Figure 2-6: Introduce GDE Modify Service View ...17
Figure 2-7: Introduce GDE Method Modification Component ..18
Figure 2-8: Introduce GDE Service Properties View ..21
Figure 2-9: Introduce GDE Extensions View ...22
Figure 2-10: Introduce GDE Service Deployment Component ..22
Figure 2-11: Introduce GDE Service Undeployment Component23
Figure 4-1 Data Description Overview ..36
Figure 4-2 caGrid Advertisement and Discovery Overview ...38
Figure 4-3 Discovering All Services ..39
Figure 4-4 Discover Services by Input ..39
Figure 4-5 Accessing Standard Service Metadata ..40
Figure 4-6 caArray Discovery Example ..42
Figure 4-7 Results from the caArray Discovery Example ...42
Figure 4-8 caArray Metadata Example ...43
Figure 4-9 Results from the caArray Metadata Example ..43
Figure 4-10 Two constructors for the caTRIP Tumor Registry data service client43
Figure 4-11 caArray Invocation Example ..43
Figure 4-12 Results from the caArray Invocation Example ...44
Figure 5-1 GAARDS Security Infrastructure ...46
Figure 5-2 Dorian ...49
Figure 5-3 Dorian credentials window ..56
Figure 5-4 Registration window ..57
Figure 5-5 GAARDS UI login window ...59
Figure 5-6 Proxy Manager window ...60
Figure 5-7 Request Host Certificate window...61
Figure 5-8 My Host Certificates window ...62
Figure 5-9 Trusted Identity Provider(s) window ..64
Figure 5-10 Add Trusted IdP window ...65
Figure 5-11 Account Management window ..67
Figure 5-12 Manage User window ..68
Figure 5-13 Administrator window ..69
Figure 5-14 Host Certificate Management window ...71
Figure 5-15 Host Certificate window ...72
Figure 5-16 Viewing/updating host credentials ...73
Figure 5-17 Local Account Management window ...75
Figure 5-18 Manage user window ..76
Figure 5-19 Example Grid Trust Fabric ..77
Figure 5-20 GTS Integration with Globus ...80
Figure 5-21 Certificate Authorities window ...86
Figure 5-22 GTS Access Management window ..87
Figure 5-23 Add Permission window ..88
Figure 5-24 GTS Trust Level Management ..90
Figure 5-25 View/Modify Trust Level window ...91

caGrid 1.2 User’s Guide

 xii

Figure 5-26 Add Trust Level window .. 92
Figure 5-27 Trusted Certificate Authority Management window ... 93
Figure 5-28 Add Trusted Authority window ... 94
Figure 5-29 Show/Modify Trusted Authority window ... 96
Figure 5-30 Deployment of multiple GTSs .. 97
Figure 5-31 GTS Authority Management window ... 99
Figure 5-32 Add Authority window.. 100
Figure 5-33 View/Modify Authority window ... 101
Figure 5-34 Grid Grouper Architecture ... 106
Figure 5-35 Grid Grouper browser ... 112
Figure 5-36 Group Management Browser .. 114
Figure 5-37 Listing of stem privileges ... 115
Figure 5-38 Update Stem Privileges window .. 115
Figure 5-39 Managing child stems in the Group Management Browser 116
Figure 5-40 Managing groups in the Group Management Browser 118
Figure 5-41 Administrating groups ... 120
Figure 5-42 Managing group privileges .. 122
Figure 5-43 Update Group Privileges window .. 122
Figure 5-44 Managing group memberships .. 124
Figure 5-45 Adding a member to a group ... 125
Figure 5-46 Example JAAS configuration file for configuring CSM RDBMSLoginModule . 142
Figure 5-47 Example JAAS configuration file for configuring CSM LDAPLoginModule 142
Figure 5-48 ApplicationSecurityConfig.xml file ... 143
Figure 5-49 ObjectStateLoggerConfig.xml .. 146
Figure 5-50 Create a group in the UPT .. 146
Figure 5-51 Protection groups and protection group elements in the UPT 147
Figure 5-52 Role and privileges association in the UPT ... 148
Figure 5-53 Group, Protection Group and Roles Association in the UPT.......................... 149
Figure 5-54 Group, Protection Group and Roles Association in the UPT.......................... 149
Figure 5-55 Code verification ... 150
Figure 6-1 Adding service endpoints in the Workflow Submission GUI 157
Figure 6-2 Submit Workflow window .. 158
Figure 6-3 Partner Link Frame dialog ... 159
Figure 6-4 Submitting a workflow ... 160
Figure 6-5 Executing a workflow .. 160
Figure 6-6 Workflow output .. 161
Figure 6-7 Details status .. 162

 xiii

Tables
Table 1-1 Document Conventions ... 3
Table 5-1 Dorian Software Prerequisites ..52
Table 5-2 GTS Software Prerequisites ...81
Table 5-3 Grid Grouper software prerequisites ... 107
Table 5-4 Properties in SRC/idp.properties .. 140
Table 5-5 jars to add to the web application’s classpath ... 145

 1

About This Guide
This section introduces you to the caGrid 1.2 User's Guide. Topics in this section
include

 Purpose on this page

 Release Schedule on this page

 Audience on this page

 Topics Covered on this page

 Document Text Conventions on this page

 Credits and Resources on page 3

Purpose
The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual
informatics infrastructure that connects data, research tools, scientists, and
organizations to leverage their combined strengths and expertise in an open
environment with common standards and shared tools. The current test bed
architecture of caBIG™, is dubbed caGrid. The software embodiment and
corresponding documentation of this architecture constitute the caGrid 1.2 release.

This User Guide addresses caGrid from the perspective of three user roles: service
developer, client application developer, and service administrator.

Release Schedule
This guide has been updated for the caGrid 1.2 release. It may be updated between
releases if errors or omissions are found. The current document refers to the 1.2
version of caGrid, released in March 2008 by caBIG.

Audience
The primary audience of this guide is the caGrid service developer, client application
developer, and service administrator. For additional information about installing and
using caGrid, see the caGrid 1.2 Programmer’s Guide.

This guide assumes that you are familiar with the Java programming language
and/or other programming languages, database concepts, and the Internet. If you
intend to use caGrid resources in software applications, it assumes that you have
experience with building and using complex data systems.

Topics Covered
This brief overview explains what you will find in each chapter and appendix of this
guide.

 About This Guide, this chapter, provides an overview of the guide.

http://gforge.nci.nih.gov/frs/?group_id=25

caGrid 1.2 User’s Guide

 2

 Chapter 1, Overview of caGrid User Roles on page 5 describes the three
primary caGrid roles for which this guide is written.

 Chapter 2, Developing caGrid Services on page 9 provides an overview and
examples using the Introduce toolkit for service development.

 Chapter 3, Creating caGrid Data Services on page 26 describes how to
create caGrid data services.

 Chapter 4, Developing Client Applications on page 35 introduces the client
applications for caGrid services.

 Chapter 5, caGrid Security on page 45 describes the caGrid security
infrastructure, which provides services and tools to administer and enforce
security policy.

 Chapter 6, Workflow Services on page 155 describes the caGrid
implementation of a workflow, which provides a grid service for submitting
and running workflows that are composed of other grid services.

 Appendix A, References on page 179 provides references relevant to
caGrid.

 Appendix B, Glossary on page 184 defines acronyms, objects, tools and
other terms related to caGrid.

Document Text Conventions
The following table shows how text conventions are represented in this guide. The
various typefaces differentiate between regular text and menu commands, keyboard
keys, and text that you type.

Convention Description Example

Bold Highlights names of option buttons, check
boxes, drop-down menus, menu
commands, command buttons, or icons.

Click Search.

URL Indicates a Web address. http://domain.com

text in Small Caps Indicates a keyboard shortcut. Press Enter.

text in Small Caps +
text in Small Caps

Indicates keys that are pressed
simultaneously.

Press Shift + Ctrl.

Italics Highlights references to other documents,
sections, figures, and tables.

See Figure 4.5.

Italic boldface

monospace type
Represents text that you type. In the New Subset

text box, enter
Proprietary

Proteins.

Note: Highlights information of particular
importance.

Note: This concept is
used throughout this
document.

 About This Guide

 3

Convention Description Example

{ } Surrounds replaceable items. Replace {last name,
first name} with the
Principal Investigator’s
name.

Table 1-1 Document Conventions

Credits and Resources

caGrid 1.2 User's Guide Development and Management Teams

Development Support (Systems, QA,
Documentation)

Management

Scott Oster
(Lead Architect)

1

Aynur Abdurazik
7
 Avinash Shanbhag

(Product Manager)
5

David Ervin
1
 Chet Bochan

9
 John Eisenschmidt

10

Ian Foster
2
 Gavin Brennan

9
 Michael Keller

6

Shannon Hastings
1
 Carolyn Kelley Klinger

8
 David Wu

6

Tahsin Kurc
1
 Wei Lu

9
 Peter Yan

7

Manav Kher
3
 Ye Wu

5

Stephen Langella
1

Ravi Madduri
2

Kunal Modi
4

Joshua Phillips
3

Joel Saltz
1

1.
 Ohio State University -
Biomedical Informatics
Department

2.
 University of
Chicago/Argonne National
Laboratory

3.
 SemanticBits, LLC.

4.
 Ekagra Software
Technologies, Ltd.

5.
 NCI - Center for
Biomedical Informatics
and Information
Technology (CBIIT)

6.
 Booz Allen Hamilton

7.
 Science Application
International Corporation
(SAIC)

8.
 Lockheed Martin
Management System
Designers

9.
 Terrapin Systems LLC
(TerpSys)

10.
 5AM Solutions

caGrid 1.2 User’s Guide

 4

Other Acknowledgements

GeneConnect – Project - Washington University

GridIMAGE – Project - Ohio State University

caBIO – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caArray – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caTRIP – Project – Duke Comprehensive Cancer Center

Contacts and Support

NCICB Application Support http://ncicbsupport.nci.nih.gov/sw/
Telephone: 301-451-4384
Toll free: 888-478-4423

http://ncicbsupport.nci.nih.gov/sw/

 5

Chapter 1 Overview of caGrid User

Roles
This chapter addresses caGrid from the perspective of three user roles: the Service
Developer, the Client Application Developer, and the Service Administrator. Topics
for each of these roles are then described in separate chapters in this guide.

Topics in this chapter include:

 Overview on this page

 Relevant Documents on this page

 User Role Definitions on this page

Overview
This guide is intended to provide a user-oriented overview of how various activities
can be accomplished using the caGrid software distribution. Some common roles
caGrid users assume are described in the following sections. The rest of this guide’s
content describes how various activities required of these roles can be
accomplished with the software. While some of the content provides specific
examples and step by step information, it should not be used as a stand alone
“tutorial” for caGrid. Additional accompanying documentation is listed below.

Relevant Documents
This User’s Guide addresses caGrid from the perspective of three user roles.
Additional information about caGrid architecture, design, application programming
interfaces (APIs) and API examples, and tool-specific guides can be found in:

Document Location
caGrid 1.2 Programmer’s
Guide

http://gforge.nci.nih.gov/frs/?group_id=25

caGrid 1.2 Design
Documents and Tool-
specific Guides

http://gforge.nci.nih.gov/docman/index.php?group_id=25
&selected_doc_group_id=2414&language_id=1

User Role Definitions
caGrid is primarily an infrastructure or middleware, providing services, APIs, and
toolkits for caBIG developers. caGrid provides the common grid infrastructure upon
which the Gold compliant grid services and tools are built. While some “end user”
tools are provided, the primary consumers of the software are intended to be
application or service developers, or service administrators.

Service Developer
caGrid users interested in providing data or analysis routines to caBIG do so by
creating and deploying grid services. As such, these users are assuming the role of

http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/docman/index.php?group_id=25&selected_doc_group_id=2414&language_id=1
http://gforge.nci.nih.gov/docman/index.php?group_id=25&selected_doc_group_id=2414&language_id=1

caGrid 1.2 User’s Guide

 6

“Service Developer”. The primary tool provided to facilitate the development of grid
services in caGrid is Introduce. An overview and examples of using this tool can be
found in Chapter 2, Developing caGrid Services on page 9.

Analytical Service Developer

As described above, Service Developers wanting to create grid services that aim to
provide some analytical routine or other business logic are referred to as Analytical
Service Developers.

Details about the caGrid support for Analytical Service Developers can primarily be
found in the first section of Chapter 2 of this guide.

Data Service Developer

Service Developers wanting to create grid services that allow access to existing
data providing resources, such as a caBIG Silver compliant data system, are
referred to as Data Service Developers. A Data Service Developer’s primary
responsibility is to provide clients query access to the underlying data, using a
standard query language. These developers may also wish to provide additional
capabilities in their service, such as read or update capabilities, and additional more
specialized means of query.

Details about the caGrid support for Data Service Developers can primarily be found
in the second section of Chapter 2 of this guide, but developers wanting to provide
additional capabilities (beyond query) in their service may be interested in the entire
section.

Client Application Developer
The counterpart to a Service Developer is a Client Application Developer, who is the
consumer of the content to which the Service Developer provides access. All grid
services are accessed by making use of a client API or service interface; the
developers responsibility for assembling these APIs or interfaces into meaningful
applications (or other frameworks) are referred to as Client Application Developers.

caGrid provides a plethora of tools and APIs for Client Application Developers, and
this document is far from an exhaustive list. However, a general overview of the
basic concepts of creating client applications and some common examples, are
shown in Chapter 4 Developing Client Applications.on page 35. It is highly
recommended that Client Application Developers also peruse the caGrid 1.2
Programmer’s Guide to understand the types of functionalities caGrid makes
available to them.

Service Administrator
The final type of role caGrid users may assume is that of Service Administrator.
caGrid is composed of a number of complex core services that require proper
administration. These core services also provide a great deal of capability for
Service Developers to configure services to integrate with existing systems for
performing such functions as authentication and authorization. The individuals
responsible for the proper management and configuration of these services are
referred to as Service Administrators. Overviews, step by step examples, and

http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/frs/?group_id=25

 Overview of caGrid User Roles

 7

configuration examples for such activities can be found in Chapter 4, Developing
Client Applications on page 35.

 9

Chapter 2 Developing caGrid Services
This chapter provides an overview and examples using the Introduce toolkit for
service development.

Preamble
Before building asynchronous and/or statefull grid services, be familiar with basic
grid service architecture and statefull grid services. To learn more about grid service
architecture and grid middleware, read the following documents:

Overview

Figure 2-1: Introduce Overall Service Creation Process

The Introduce toolkit is designed to support the three main steps of service
development:

1. Creation of Basic Service Structure. The service developer describes at the
highest level some basic attributes about the service such as service name and
service namespace. Once the user has set these basic service configuration
properties, Introduce will create the basic service implementation, to which the
developer can then add application-specific methods and security options
through the service modification steps.

2. Service Modification. The modification step allows the developer to add,
remove, and modify service methods, properties, resources, service contexts,
and service/method level security. In this step, the developer can create a
strongly-typed service interface using well-defined, published schemas, which
are registered in a system like the Mobius GME, as the type definitions of the
input and output parameters of the service methods. One the operations are
added to the service the developer will then be able to add the logic which
implements the methods.

3. Deployment. The developer can deploy the service which has been created
with Introduce to a Grid service container (e.g., a Globus or Tomcat service
container). A service developer can access the functions required to execute
these three steps through the Graphical Development Environment (GDE) of
Introduce. The runtime support behind the GDE functionality is provided by the
Introduce engine, which consists of the Service Creator, Service Synchronizer,
and Service Deployer components. The toolkit provides an extension framework
that allows Introduce to be customized and extended for custom service types

caGrid 1.2 User’s Guide

 10

and discovery of custom data types. In the following sections, we describe the
software prerequisites, the Introduce Graphical Development Environment, the
Introduce Engine, and the Introduce Extension Framework in greater detail.

Software Prerequisites

 Java 1.5 or greater (http://www.java.sun.com)

 Apache Ant 1.6.5 or 1.7.0 (http://www.ant.apache.org)

 The Globus Toolkit Version 4.0.x (http://www.globus.org)

Changes from Introduce 1.1

 Refactored GUI to be easier to use and manage services.

 Removed ServiceTasks JDOM dependecy to the services lib directory and
moved it to the tools directory.

 Added abiilty for services to be undeployed

 Added ability to have resources persisted

 using XMLPersistanceHelper customized from globus

 • Renamed some service files so that they all now start with the service
name

 BaseResourceBase

 BaseResourceHome

 ResourceConfiguration

 ServiceConfiguration

 Moved constants file to common so that client and service can both use
them

 Now using jaxmejs 0.5.2 with JAXME-77 patch applied

 Added ws-notification support as a resource framework option

 Added support for configuring resource framework options from a list of
options

 Fixed problems with finding first letter upper cased methods for addition and
removal

 Fixed problems when having introduce imported methods that have no
package for the return type (void)

 Refactored the Resource framework to be one set of templates instead of
three

 caused changes to the services.xsd to support the new way of describing the
resource framework options as a list instead of one string

 Developing caGrid Services

 11

Introduce Graphical Development Environment

Figure 2-2: The Introduce Graphical Development Environment (GDE)

The Introduce Graphical Development Environment (GDE) can be used to create,
modify, and deploy a grid service. It is designed to be very simple to use, enable
using community accepted data types, and provide easy configuration of service
metadata, operations, resources, and security. It also allows customized plug-ins to
be added for such things as discovering data types from grid repositories and for
creating custom service style design templates.

The Introduce GDE contains several screens and options for the service developer
to 1) create a new service, 2) modify an existing service, 3) discover and use
published data types in order to create strongly-typed service methods, and 4)
deploy the service.

caGrid 1.2 User’s Guide

 12

Service Creation

Figure 2-3: Introduce GDE Service Creation Component

The service creation component, shown below, enables the developer to create a
new grid service. Using the creation interface, the service developer can provide
basic information about the service such as:

 Creation Directory: The creation directory is the location of which the grid
service will be generated.

 Service Name: Service name is the name that will be used to generate the
service. The service name must be a valid java identifier.

 Package Name: The package name is the base package to be used when
generated the grid service source code.

 Namespace: The namespace is the namespace to be used when defining
the WSDL of the service.

The developer also has the ability to add service extensions. A service extension is
an Introduce plug-in (see Service Extensions), which is designed to add
customizations to the service. For example, service extensions might add pre-
defined operations, resources/resource properties, or security settings. They enable
the development of custom service types with predefined methods, which must be
implemented. They also enable Introduce to run the custom code implemented in
the plug-in, which makes modifications to the underlying service being created. This
capability allows the specialization of Introduce to support domain specific common
scenarios, further abstracting the individual service developer from responsibilities
related to the deployment of grid technologies in a production environment. Once
the information has been entered and extensions, if any, have been selected, the
user will select the create button. Once the creation button is selected the Introduce
creation engine will begin generating the service. After the service is generated, it is
compiled and the Modification component appears.

 Developing caGrid Services

 13

Service Modification
Service modification can be performed on any new or previously modified Introduce
generated service. The service developer can perform a series of operations in
order to begin to customize the grid service or modify the existing grid service. The
overall flow in the modification of a grid service is to first use the namespaces tab to
be sure that all the data types that are desired to be used and the grid service have
been selected and added to the service. Next the service can choose to either
add/remove or modify operations, metadata in the form of resource properties,
service properties, security setting, and service contexts. The following sections will
describe in detail how each of the components of the modification viewer can be
used to modify the grid service to achieve desired functionality. By selecting the
“Modify Service” button on the main menu a prompt will apear to enable choosing
the service to be modified. Once the desired directory containing the service to be
modified is selected the modification viewer component will be launched. The
modification viewer contains six main areas where modifications can occur on the
main service:

Data Types

Figure 4: Introduce GDE Service Modification Component

The first task in the modification of a grid service is to discover the data types that
are desired to be used as the input and output types of methods of the service and
the data types for describing the resource properties of the service. Adding a data
types to the service is equivalent to copying schemas into the schema location of
the service and importing the schemas into the WSDL file so that the types can be
referenced by the service. This is done via the “Types” tab of the Graphical Service
Modification Environment. This tab shows the current types the service is using, and

caGrid 1.2 User’s Guide

 14

provides access to the data type discovery components (such as the Mobius GME),
for selecting and configuring additional types. The “Select Type” frame enables
several types of ways to locate data types and bring them into the service. Currently
there are three main discovery mechanisms (GME, Globus, and File System) that
come with introduce, however, this is extensible via the Discovery Extension
described in the Extensions section. Once a set of data types from a namespace
are brought into the service the user has the ability to describe how these data types
will be mapped into there respective Java classes. This can, by default, be done
automatically by Introduce via Axis. By default, Axis will create new java beans for
each data type and also provide a serializer and deserializer for those objects. If for
example, a set of objects already exist for this particular data types then a user can
decide to provide there own classes and serialization/deserialization factories.

Importing Data Types

Using the GDE, developers can obtain the data types that they want to use for
operation input parameters and return types from any data type discovery plug-in.
Utilizing common and standard data types, which are defined outside of any
application-specific service, enables the creation of strongly typed grid service
interfaces. This increases service-to-service interoperability. Once a data type is
chosen through the GDE, the data type definition is retrieved, written into the
schema/<service_name> location of the service, and imported for use in the service
WSDL description so that Java beans can be generated and the data types can be
programmatically used.

The Introduce toolkit comes with a set of pre-installed discovery plug-ins, such as
the Mobius GME and a basic file system browser, which can be used to locate and
import schemas. The GME plug-in enables developers to browse, upload, and
download schemas published in a GME. These schemas represent the valid data
types which can be used during service creation. Using the GME plug-in, a
developer can take a schema, create an editable view of the schema, and then
submit the schema to the GME. If the namespace of the schema is not managed by
the GME, to which the schema is submitted, the plug-in will attempt to add the
namespace to the GME before submitting the schema. Once the schema has been
uploaded, it can be used by anyone in the Grid through the Introduce toolkit. The
GME plug-in browser window enables browsing through all the GME published
types by namespace and schema name. It presents the user a quick view of the
schema and the option to download the schema bundle. The schema bundle
contains the schema and all other schemas which are referenced by that schema.

When importing a data types there are several options in where to acquire the data
type definitions. Introduce is build in with the following data type definition tools,
however, this is a pluggable piece of Introduce. Once a data type is imported using
an import tool that data type can be customized for the generation of Java Beans. If
you select data type on the left you will see in the lower left panel that the
namespace and package name have been listing. This is called the namespace to
package map. This will determine the package name of the Java Beans that get
created for the data type. Feel free to alter the package name if the Introduce
suggested package name does not work well.

 Developing caGrid Services

 15

 File System Data Type Importing: The File System tab of the Import Data
Types Panel enables the developer to load in schemata which contain data
types they wish to use the service from the local filesystem. The developer
can browse to choose the schema they wish to import, and the click the add
button. Once the add button is clicked the schema and any locally included
or imported schemata will be copied to the services schema location in the

schema/<service name> directory.

 Global Model Exchange Data Type Importing: The Global Model
Exchange Data Type extension enables browsing for schemata from a
remote grid service which is responsible for storing them. Introduce can
connect to a GME and load in all the available namespaces the GME is
storing schemata for. Once the developer selects a namespace the name
drop down will be populated with all the available schema names for that
schema. Once a namespace and name have been selected then user can
select the add button and the schema and any imported schemata will be
downloaded and imported into the service. The main Configuration menu at
at the top for the GDE will contain the ability for changing the location of the
GME to use.

 Globus Data Types Importing: The Globus Data Types extension enable
the developer to import schema from the Globus toolkit into their service.
There is a drop down containing a list of the available schemata from the
current installation of the Globus Tooolkit. Once a namespace has been
selected and the add button has been selected then the schema will be
added to the service's available data types list.

Re-Importing a Modified Data Type
Introduce will enable re-importing of a data type if the developer wants to re-import a
particular schema which may have been modified or extended. In order to do this
you must make sure the "Namespace Type Replacement Policy" configuration
setting in the Introduce "Configuration-->Preferences" menu is set to "warn". Once
this is done you can simply browse back to the data model and import it again.

Using Custom or Pre-Existing Java Beans
Once a namespace and corresponding data types have been imported into the
service each data type can be further customized. For a particular data type one can
chose to use a Custom Java Bean that already exists instead of having Introduce
create the java beans for the service. This can be accomplished by selecting the
Configure Types tab in the Types tab and then the + button beside the Customize
Bean label. This will drop down the customization panel for that particular data type.
In this panel, to support using a custom bean for the selected data type definition,
the developer must fill out the three fields: the classname of the bean to be used
(make sure the package name above matches the package name being entered for
the custom beans classname), the deserializer factory class, and the serializer
factory class. For more information on using custom serialization or what it means to
be a custom bean please refer to the most recent Globus documentation on type
mapping.

Services

The services tab of the GDE is the main tab for editing a service. It contains a tree
which shows all the services or service contexts which are part of your service, their

caGrid 1.2 User’s Guide

 16

methods, and their resource properties. This tree is the main view of the services
which will be deployed as part of a deployment of your introduce service. You have
the ability to add new service contexts, add/remove/modify operations on a
particular service, and add/remove/modify resource properties of a particular
service.

Figure 2-5: Introduce GDE Services View

Edit Service

Once in the tree view of the Services tab you can right click on any service and
select the Edit button. This will pop up a window, like the image below, that will
enable the user to configure the service context. From this pop up window the
resource framework options can be added or removed, and service level security
can be configured.

Resource Framework Options

The resource framework options for a service will add or remove a particular type of
functionality to the service resource. The supported resource framework options for
this release of introduce are as follows

 Custom: Enables the user to provide there own implantation of the resource
class.

 Singleton: The service will only have one instance of the resource.

 Lifetime: The resources created by this service will support the WS-Lifetime
specification and therefore the service will implement the
setTerminationTime operation as part of its wsdl.

 Developing caGrid Services

 17

 Persistent: The resource created by this service will automatically persist
and resource properties and notification to the file system so that if the
container is restarted they will come back to life.

 Secure: The resource will implement SecureResource and therefore have
the getServiceSecurityProvider so that it can provide a security descriptor for
the particular instance of the resource.

 Notification: The resource created by this service will automatically support
he WS-Notification specification and therefore the service will implement the
subscribe operation in its wsdl and the client will have operations to make
subscriptions and utilize notifications.

 Resource Property Access: The resource will implement the
getResourcePropterty, getResourceProperties and QueryResourceProperty
operations and these methods will be exposed through the service's wsdl.

Figure 2-6: Introduce GDE Modify Service View

Security

Introduce exposes the functionality of Globus GSI through a set of panels which
enable the user to customize security for the entire service or specific methods on
an service context. The user can choose any of the GSI configuration scenarios
such as Transport Level Security with Integrity and Secure Communication with
Privacy. Introduce also enables configuring a particular service, operation, or
resource, for authorization. Introduce comes with capabilities to configure

caGrid 1.2 User’s Guide

 18

authorization using GridGrouper and/or Common Security Model, or a Custom PDP
based authorization chain. Graphical panels will enable the user to describe an
authorization policy which must be met in order to give access to the particular
service or operation. For detailed knowledge of what the configuration options for
Secure Conversation or Secure Credentials are please refer to documentation for
the GSI framework.

Operations

Figure 2-7: Introduce GDE Method Modification Component

The developer can add, remove, or modify operations on the service, using the
Operations tab of the GDE Service Modification interface. For each operation, the
developer needs to set the input parameters, return type, and any fault types that
can be thrown from each service method. The security configuration of the operation
should also be set if desired. The input and output types can be selected from the
types tree on the left. This tree represents the available data types which can be
used by this service. If any input parameter or output type is to be an array the array
checkbox must be checked in the table on the right. Also, once an input parameter
is added the name of the parameter is defaulted. This name can be edited by the
developer by selected the cell in the name column and editing the text. There are
two ways to add faults, either choose a type from the types tree which extends
WSRF BaseFaultType or create a new fault which will tell Introduce to create you a
new fault type which extends the BaseFaultType.

 Developing caGrid Services

 19

Using a Pre-Existing Operation Implementation

The implementation of a described operation may already exist in another class
which is provided by a jar file. You can tell Introduce not to stub this methods server
side implementation but instead call this provided method implementation directly in
the class provided. In order to use this functionality the “Provided” checkbox must
be selected and the Class name attribute must be filled out in the “Provider” tab.
The class name attribute will point to the fully qualified class name of the class
which implements this WSDL described operation. The jar file that contains the
provided Class which implements this operation must also me copied into the lib
directory of the service. This will ensure that the operation will be located at the time
the operation is called on the service. For more information on this particular topic
refer to the Globus Documentation on Operation Providers.

Importing Operations

Operations can also be imported from other services. Importing an operation
enables the service to implement the exact same operation signature. This enables
the service to have an operation which has the exact same WSDL signature of the
operation which is being imported. This would enable either client to invoke this
operation on either service. Importing can be done in two ways: (1) from an
Introduce generated service, or (2) from a WSDL file. For case 1, importing from an
Introduce service, the developer would browse and select the Introduce generated
service which contains the operation to be imported. Once the Introduce service is
selected a list of services which contain this method will be available to select from.
Select the service from which you want to import the operation. The methods
signature will be imported and the developer will be prompted to make sure to copy
over the WSDL and XSD files needed to import the method into the schema<service
name> directory of the service. For case 2, if a method is described in another
WSDL but the developer wants to implement this exact method from this WSDL.
The developer must have the WSDL and corresponding XSD’s in the
schema/<service name> directory of the service. Then the developer will be able to
browse those WSDL files and select the port type they wish to import the operation
from. The importing of a method across services will assure not only that each
service has completely protocol compatible methods but also that each service’s
method can be invoked by the same base client. This enables the notion of basic
inheritance in grid services and is discussed further in the Introduce technical guide.

Resource Properties

Service state information and metadata in the form of resource properties can be
added, removed and configured via the Metadata tab of the GDE Service
Modification interface. The metadata elements which are added to the service can
be populated by a file statically or managed dynamically within the service. Also,
these metadata entities can be registered with an index service so that users can
use the metadata to locate the service. Once the Metadata tab is clicked the left
panel will contain a list of available data types that can be used for metadata and
the right will contain the list of currently chosen data types. By double-clicking on a
data type in the left panel it will be added to the main service's metadata list. Any of
the service's metadata can be initially populated from a file if desired. If this is
chosen then once the service is started up in the container the file will be used to
populate the particular metadata object in the service. Each metadata in the service

caGrid 1.2 User’s Guide

 20

can also be selected to be published to an index service. This will enable some or
all of the metadata to be used in to locate the service via an index service.

Service Contexts

A power user feature which can be enabled at modification time is the addition or
removal of service contexts. A service context a sub-service or complimentary
service which is used with the main service or some other service context. The
service context is comprised of the service, resource, operations, and resource
properties. So, in a sense, service context is exactly the same thing as the main
service, except that it is not a singleton based resource and instances can be more
dynamically created and or destroyed. Contexts can be added via the Service
Contexts tab of the GDE Service Modification interface. Service contexts define
additional of operations needed to support the desired service functionality. This is
enabled by using WSRF capabilities of the Globus Toolkit. As an example, if an
operation on the main service enables the user to query a database, that operation
might create a resource in another context and return the handle to that context to
the user as opposed to the full query result set. This secondary context can then
enable the user to iterate through the query results. This is accomplished by
operations or resource properties to this secondary service context which will be
responsible for iteratively giving results to the user. It should be noted that multiple
instances of these contexts can be created and executed concurrently; one for each
query that comes in, for example. This style of grid service is supported by the
WSRF specifications. Though the details of the WSRF-implementation of these
concepts are abstracted away from developers its worth noting how they are
realized, and this is described in detail in other sections. Introduce makes it easier
for service developers to create such complex services, via the GDE, without having
to fully understand the underlying service implementations. Anything that can be
done to the main service, except service properties which are globally accessible
can be added to a service context. For example, resource properties can be added
and used to maintain state or for publishing metadata to an index service. Also,
operations can be added to the service context and can also be implemented in the
service itself or in the service's resource if they are acting on the state of the
instance of the resource.

A Statefull Grid service is comprised of several key components which make it able
to maintain state and enable a client to invoke the service several time under the
same context. A statefull grid service is composed of the service, a resource home,
and the resource type. This service organizaton can be used in many different
scenarios. For, example, when an operation on the service is invoked the service
can be implemented to handle that operation, or if the operation is addressing a
particular resource instance in the service, the service can lookup the resource and
call whatever might be necessary to call on the particular addressed resource. For
assistance on how to develop services utilizing this technique please refer to the
Introduce Developers Guide

 Developing caGrid Services

 21

Service Properties

Figure 2-8: Introduce GDE Service Properties View

Service properties are key value pairs which can be set at deployment time and are
available to the server side implementation of the service at run time. This enables
passing in configuration variables to the server side of the service at deployment.
These key value pair properties can be declared in Service Properties tab of the
GDE Service Modification interface. Once the "Service Properties" tab is clicked the
main panel will show a table of the service properties. The bottom panel has an
entry for which can be used to create a new service property. The properties will be
confirmed and/or can be changed from there default values at service deployment
time. The variables can then be accessed inside the user’s implementation of the
operations through the services ServiceConfiguration class. For example, if you add
a property called foo under the service properties tab, and then save the service.

Then go look at the source code for the <service

package>.service.ServiceConfiguration.java class you will seee that it now has

available methods for string getFoo() and void setFoo(string foo). These
operations are now available to your service and can be used to pass properties into
your service at deployment time as well as other users for configuring and sharing
properties in your service. The <service

package>.service.ServiceConfiguration.java contains a static method for

obtaining an instance of itself called getConfiguration(). Any call to that from
anywhere in the service will return the handle to the ServiceConfiguration instance
and hence access to the service properties.

caGrid 1.2 User’s Guide

 22

Service Extensions

Figure 2-9: Introduce GDE Extensions View

Deployment

Figure 2-10: Introduce GDE Service Deployment Component

The deployment option of the GDE allows the service developer to deploy the
implemented grid service, which has been created with Introduce, to a Grid service
container. The toolkit currently supports deploying a service to either a Globus,
Tomcat, or JBoss(cagrid only currently) Grid service container; however, support for
other deployment options can easily be added to the GDE. The deployment window
allows the service deployer to populate service configuration properties, which the
service will have access to at runtime. Then the service is deployed to the selected

 Developing caGrid Services

 23

container. The Advanced tab enables the deployer to configure information such as
the index service url and the deployment prefix to be used to make the service
unique int the container. The Service Properties tab enables the deployer to set the
configurable properties on the service if there are any.

Undeployment

Figure 2-11: Introduce GDE Service Undeployment Component

Services generated with Introduce 1.2 and higher support undeployment. The
service, when deployed, creates a log file containing information about what was
copied into the container. Utilizing this information the undeployment task of the
service is able to determine what was copied to the container that is not used by any
other service and it will remove it. This feature enables keeping the container from
getting corrupted with left over jars and schema from deployments.

caGrid 1.2 User’s Guide

 24

Software Updates

Introduce is now capable of downloading and installing new extensions, upgrades to
older extensions, and newer versions of itself. In the GDE there is a Help menu. In
this menu there is a Check for Updates button. This button will take the user to a
wizard which will walk them through looking for any software updates or new
packages which they may want to download and install.

Service Migration
Introduce has the ability to help migrate a service to a newer version of Introduce. If
the developer attempts to open a service generated with an older version of
Introduce (1.0 and newer), Introduce will prompt the user to proceed with the
migration process. The migration process is fully automated and when it is complete
will report out to the developer what might be left for them to adjust based on there
potentially custom changes or if there were any errors during the process.

 Developing caGrid Services

 25

When using Introduce to open a service for modification it will check the service to
see which version of Introduce and its Extensions were used to create/modify the
service. If those versions are different from those installed in the Introduce being
used, it will prompt the user and notify them that the service needs upgrading. When
prompted the user will have to decide to either:

 Upgrade: upgrade the service to the version that Introduce can properly
work with it

 Open: attempt to have Introduce work with it without upgrading which is
potentially dangerous and recommended.

 Close: do nothing to the service and do not proceed with the modification
process

If you choose to upgrade the service, the upgrade process begins. Once finished, a
report indicating the major changes and potential issues appears for your review.
Once you are confident that you have addressed any issues in the upgrade report,
select the Proceed option. The Modification Viewer opens, displaying the newly
upgraded service. If the report warns you about any modifications necessary to
complete the upgrade process, click the Edit button. This will enable you to halt the
upgrade process and make the changes so that Introduce can work with the service
later, should you need additional modifications. If you are not confident in the
changes and don't want to upgrade, select the Roll Back option to restore the
service to its previous state.

 26

Chapter 3 Creating caGrid Data

Services
This chapter describes a set of extensions to the Introduce Toolkit with which grid
service developers can create data services.

Topics in this chapter include:

 Introduction on this page

 Functionality on this page

 User Interface Components and Details on page 27

Introduction
caGrid Data Services can be built with a set of extensions to the Introduce Toolkit.
This provides grid service developers with a simple and well defined starting point to
create caBIG gold compliant Data Services. When the data service extension is
selected in creating new services, the user is presented with the both standard
service modification interface, and a new section containing options specific to
configuring data services. This extension may be manually selected by using the
'Advanced' tab of the caGrid Service Creation interface in Introduce, or by simply
selecting the 'Data Service' radio button on the standard view.

Functionality
The Introduce Toolkit allows for extensions to be included in the service
development process which add functionality to almost any step of the service build
process. The Data Service extension makes use of three of these extension points.
The first extension point used is immediately following service creation. This post-
creation operation makes the following changes to the generated service:

 The data service WSDL file is copied into the service.

Optionally, if WS-Enumeration and / or BDT support is enabled, the WSDLs for
these will be included as well.

Additionally, selecting WS-Enumeration and / or BDT will cause those extensions to
be added to the service and run before the data service extension.

 The data service schemas for CQL and Domain Models are copied into the
generated service.

 The data service libraries are copied in to the service.

 The base data service query method is added, and its implementation is
defined in the copied libraries and provided in the copied WSDL.

If WS-Enumeration and / or BDT support is enabled, specialized query methods for
each of these are added, as well as their implementation.

 Data Service specific service properties are added.

 Creating caGrid Data Services

 27

The next step in the build process added by the Data Service extension is invoked
when modifications to the service are saved. This operation happens before the
standard operations provided by Introduce are executed which generate code for
user defined methods, edit WSDL files, and copy schemas. This pre code
generation operation makes the following changes to the service:

 Service properties are modified.

The property defining the query processor class implementation is populated with
the user’s defined value.

Properties required by the query processor implementation for initialization are
synchronized with the service model.

 Adds domain model metadata.

The caDSR grid service may be contacted to generate one a domain model. This
process can be time consuming depending on the network connection to the caDSR
and the specific package and project combination selected.

If the service developer has defined an XML file containing the domain model
definition, it will be copied into the service.

Following the execution of the pre code generation extension, the standard
Introduce build operations are invoked. When this is complete, the final extension
operation is invoked on the new service. This operation modifies the generated
Eclipse files to add the new jar library files to the project’s classpath.

User Interface Components and Details

Creation Interface

The process of creating a caGrid data service begins with the Introduce creation
interface. A developer can use this interface to control some of the low level
implementation details of a grid service, including the service's name, package, and
namespace. To create a new data service, the service developer only needs to
change the radio button selection in the lower portion of this dialog from Analytical
Service to Data Service and click Create. For more control over which extensions
are added to the service, from the Advanced tab, add and remove any extensions
installed into Introduce. Adding the Data Service extension on this tab has the same
effect as selecting the radio button on the Standard tab.

caGrid 1.2 User’s Guide

 28

Styles and Options

When the data service extension has been selected from the caBIG creation dialog
in Introduce, the service developer clicks Create. A dialog allowing selection of a
data service style appears. Use data service styles to repeatedly create highly
customized data services. This dialog also allows the developer to enable the WS-
Enumeration or Bulk Data Transfer features of the data service. When the initial
creation process is complete, the service modification interface appears.

Service Modification Interface
The Data Service extension adds a tab component to the Introduce Toolkit’s service
modification view. This tab contains several sub-tabs, each containing major points
of configuration for the data service:

 Domain Model

Provides facilities for selecting the domain of data types available to be queried by
the data service

 Query Processor

Allows the user to select an implementation of CQL to use in the data service and
provides for configuration of its parameters

 Details

Serialization of data types, mapping classes to XML Schema element names, and
enabling / disabling query validation

 Auditing

Selection and configuration of auditors for various processes of the data service
infrastructure

 Enumeration (Optional)

If the WS-Enumeration or BDT feature is enabled for data services, this tab will be
available to choose a server side implementation of the WS-Enumeration spec.
Generally this will not need to be changed from the default implementation

 Creating caGrid Data Services

 29

Domain Model

On the Domain Model tab, the user may select the types exposed by this data
service. Data types are derived from information stored in the caDSR.

The top field labeled 'caDSR' indicates the URL of the caDSR grid service to
access. The button 'Refresh from caDSR Service' queries the grid service to retrieve
a list of Projects and UML Packages available in the caDSR. Projects and packages
can be selected with the two dropdown menus provided. The 'Add Full Project'
button will insert all packages and classes from the project into the domain model.
'Add Package' will insert a single selected package, and 'Remove Package' will take
a package out of the domain model. When a package is added, its contents will
appear in the tree below the buttons. This tree contains check boxes next to each
package and its individual classes. Placing a check next to a class will add it to the
domain model as an object which can be queried, and by default, used as a type
which can be targeted with a query. Placing a check by a package will automatically
add all the classes in that package in the same way.

Each package selected to participate in the domain model must be mapped to an
XML schema for serialization across the grid. If a package is selected for which no
schema can be found, the data service extension will prompt the service developer
to locate it.

The domain model may be viewed graphically by clicking the 'Visualize Domain
Model' button. Note that this may cause the domain model information to be
retrieved from the caDSR service before it can be displayed, which can be a time
consuming process. A dialog with a progress bar keeps the service developer
appraised of the progress of this process.

caGrid 1.2 User’s Guide

 30

The 'Advanced Options' button shows a dialog which enables the service developer
to control advanced options for domain model selection.

The 'No Domain Model' check box disables use of a domain model in the data
service. Selection of this option is intended for use when testing other aspects of a
service. The option to use a domain model from the file system is also intended for
testing purposes. Since building a domain mode from the caDSR can be a time
consuming process, the domain model may be generated from the caDSR
elsewhere and specified here. Selecting either of these options will disable selection
of the domain model from the caDSR on the Domain Model configuration tab.

Query Processor

The Query Processor tab shows a drop down of all currently available CQL Query
Processor implementations. If a query processor other than the one displayed is
required, the jar file containing it may be added to the service by clicking the 'Add
Jar' button. When a new jar file is added to the service, both the list of jars and the
query processor drop down will update to reflect the changes. If a query processor
class depends on other classes, the jars containing those dependencies must be
added this way as well, and before the jar containing the query processor itself.

The class selection is not limited to the displayed classes specifically, as the drop
down is manually editable. The added jar files will be copied into the service’s library
directory, and deployed with the service. Selecting a class from the drop down will
make it the query processor implementation which is invoked by the data service to
handle queries at runtime. Its configuration properties (if any) will be shown in the
table at the bottom of the screen. This table shows the name of every parameter, its
default value, and an editable field where a custom value may be entered. These

 Creating caGrid Data Services

 31

parameters are stored as service properties in the generated service and are made
available at runtime through JNDI. Query processors may optionally supply their
own configuration user interface, which can be displayed by clicking the 'Launch
Query Processor Configurator' button.

Custom CQL Query processors may be implemented to support querying over a
specialized data source by extending a provided base class.

Details

The Details page allows configuration of lower level functionality in the data service.
This tab contains a table allowing configuration of the XML schema element each
data type maps to, the way each data type in the domain model will be serialized
and deserialized, and a flag to indicate if each type may be targeted and returned by
a CQL query.

Types can be selected either individually or in groups and their serialization is
configured by a right-click popup menu. This menu allows selection of either the
default serialization, SDK serialization for caCORE SDK generated objects, or a
custom serialization. Selecting SDK Serialization assigns the SDK serializer and
deserializer factories to the selected types. Custom serialization presents the user
with a dialog box in which to enter the serializer and deserializer classes which will
be assigned to the schema type. Changes made to type serialization on this tab will
be reflected on Introduce's built-in 'Types' tab as well. This information is recorded
in the generated client-config.wsdd file, as well as the server-config.wsdd. These
configuration files may be used later by the data service client tools to properly
deserialize results of queries. This tab also allows the service developer to select
what type of query validation they desire to be performed. Selecting to validate CQL
syntax will cause the Data Service to ensure that the submitted CQL query
conforms to the CQL schema. Selecting the validate domain model option will cause
the data service to parse the CQL query against the domain model, ensuring that all
aspects of the query remain within the confines of the exposed domain model.
Using these options in conjunction ensures that every query that reaches the CQL
query processor implementation is both syntactically correct and conforms to the
domain model, which can substantially simplify checking for potential errors in the
query processor.

caGrid 1.2 User’s Guide

 32

Auditing

The auditing page allows auditing settings to be configured for the data service.
Multiple auditors may be added to the service, each of which may handle auditing
events in its own way. Multiple instances of the same auditor type may be added as
well, allowing configuration options to dictate their behavior and handling of auditing
events.

Four points of the data service query process may be audited:

 Query Begins

This event is fired when a query is first submitted to the data service before any
validation or processing has been done.

 Validation Failure

This event is fired when a query fails the validation process. If validation is not
enabled, this event will never be fired.

 Query Processing Failure

If a query should fail to process correctly, this event is fired. The reason (exception)
causing the failure is included in this event.

 Query Results

When a query completes successfully, this event is fired. The results of the query
are available at this point as well.

 Creating caGrid Data Services

 33

Enumeration

The enumeration page appears only when a data service's enumeration or BDT
support features are enabled. This tab allows the service developer to select a
server side implementation of the EnumIterator interface to support the WS-
Enumeration specification. In caGrid 1.2, there are five implementations which may
be selected. Two are supplied with the Globus WS-Enumeration support, and three
are part of caGrid itself. The default selection is the caGrid implementation which
uses Java 5's concurrent package to fully support the specification, including
timeouts, and maximum characters. The other implementations support fewer
features, but may be desirable for duplicating the functionality of other WS-
Enumeration enabled services.

Most Current Information

For the most current information regarding the Introduce extension for caGrid Data
Services, please see the caGrid.org wiki page:
http://www.cagrid.org/wiki/Data_Services:Documentation:1.2:User_Guide.

http://www.cagrid.org/wiki/Data_Services:Documentation:1.2:User_Guide

 35

Chapter 4 Developing Client Applications
This chapter introduces the client applications for caGrid services.

Topics in this chapter include:

 Overview on this page

 caGrid Client APIs on page 36

 Client Application Case Study: caArray on page 42

Overview
Extending beyond the basic grid infrastructure, caBIG specializes grid technologies
to better support the needs of the cancer research community. A primary distinction
between basic grid infrastructure and the requirements identified in caBIG and
implemented in caGrid is the attention given to data modeling and semantics. caBIG
adopts a model-driven architecture best practice and requires that all data types
used on the grid are formally described, curated, and semantically harmonized.
These efforts result in the identification of common data elements, controlled
vocabularies, and object-based abstractions for all cancer research domains. caGrid
leverages existing NCI data modeling infrastructure to manage, curate, and employ
these data models. Data types are defined in caCORE UML and converted into
ISO/IEC 11179 Administered Components, which are in turn registered in the
Cancer Data Standards Repository (caDSR). The definitions draw from vocabulary
registered in the Enterprise Vocabulary Services (EVS), and their relationships are
thus semantically described.

In caGrid, both the client and service APIs are object-oriented, and operate over
well-defined and curated data types. Clients and services communicate through the
grid using respectively Globus grid clients and service infrastructure. The grid
communication protocol is XML, and thus the client and service APIs must transform
the transferred objects to and from XML. This XML serialization of caGrid objects is
restricted in that each object that travels on the grid must do so as XML, which
adheres to an XML schema registered in the Global Model Exchange (GME). As the
caDSR and EVS define the properties, relationships, and semantics of caBIG data
types, the GME defines the syntax of the XML serialization of them. Furthermore,
Globus services are defined by the Web Service Description Language (WSDL).
The WSDL describes the various operations the service provides to the grid. The
inputs and outputs of the operations, among other things, in WSDL are defined by
XML schemas (XSDs). As caBIG requires that the inputs and outputs of service
operations use only registered objects, these input and output data types are
defined by the XSDs, which are registered in the GME. In this way, the XSDs are
used both to describe the contract of the service and to validate the XML
serialization of the objects that it uses. Figure 4-1 details the various services and
artifacts related to the description of and process for the transfer of data objects
between client and service.

caGrid 1.2 User’s Guide

 36

Figure 4-1 Data Description Overview

caGrid Client APIs
caGrid services are standard WSRF (Web Service Resource Framework) services
typically implemented using the Globus toolkit version 4. While it is expected most
clients and services will not only use Globus, but will also use the caGrid-provided
tools that build on Globus, it is worth noting that caGrid uses an open specification
for all communication between client and service. This enables interoperability
between toolkits and programming languages, when needed. The extent of the
caGrid user and programmer documentation focuses on the Java APIs provided by
caGrid and, in some cases, Globus. Users interested in lower level specifications
can consult the caGrid Specifications.

Secure Communication
Grid security can be complex and a detailed discussion on it is out of the scope of
this document. The Globus documentation
(http://www.globus.org/toolkit/docs/4.0/security/) and tutorials
(http://gdp.globus.org/gt4-tutorial) provide a good overview and details on the topic.
For the most part, caGrid clients and users need not concern themselves with all the
details, but should have a basic understanding of what is happening “under the
hood”, and should understand how to “log in” and obtain credentials for secure
communication with services.

caGrid builds on GSI (Globus Security Infrastructure), and uses Public Key
Cryptography (PKI). Both services and clients may optionally have credentials
(certificates), and authenticate and authorize each other. Services and

http://www.globus.org/toolkit/docs/4.0/security/
http://gdp.globus.org/gt4-tutorial

Developing Client Applications

 37

corresponding clients generated from the Introduce toolkit attempt to automatically
configure security appropriately, and this behavior is sufficient for most users,
however it can be overridden (either by manually configuring this client “stub” or by
overriding the provided configureStubSecurity method). Introduce clients attempt to
communicate anonymously with services, as long as the service allows it (as
advertised via its caGrid ServiceSecurityMetadata). If a service does not allow
anonymous communication, client credentials must be used to authenticate the
service. Introduce-created clients attempt to use the default Globus credentials, if
present (via a grid-proxy-init, or logging in with Dorian and specifying setting the
credentials as the defaults). Alternatively, Introduce-created clients have
constructors, which take credentials (GlobusCredential), and also have an
appropriate setter method (setProxy), which can be used after construction. Some
services have different security requirements for different operations, so it may not
be immediately obvious whether or not credentials are required. As such, when
communicating with secure services it is good practice to have a valid grid proxy set
as default, or specified on the client; the client APIs will only use it if necessary. For
additional information on how to obtain grid credentials and access your grid proxy,
see Chapter 5. For additional information on lower-level security details (such as
how clients may perform authorization of services, or configure the communication
channel), see GTS and the Globus Toolkit on page 78.

Definition of an EPR
As caGrid is a service-oriented architecture, the majority of the APIs made available
are either tools and utilities, or client APIs for communicating with services. There
are a number of caGrid-provided “core” services, as well as community provided
Data and Analytical services. In order for a client to communicate with a service, it
must first know its network end point, or address. In WSRF, this end point is referred
to as an End Point Reference, or EPR. A detailed discussion of WSRF and EPRs is
out of the scope of this document, but suffice it to say an EPR contains the
information necessary to communicate with a service, and optionally identify a
resource in that service. EPRs generally take two forms: a resource-qualified end
point and a non-resource qualified end point (basically the URL of the service). In
caGrid, all services can be communicated, at least initially, using the latter, which
means clients that know the URL of the service may manually create an appropriate
EPR instance. Complex services that manage state on behalf of the client (such as
the workflow service and federated query service) have some operations that return
a resource-qualified EPR, which can then be used to communicate with an
appropriate service-side resource. However, again note, the initial communication
with the service originates with a simple URL. Some caGrid APIs that communicate
with services will provide convenience methods that take a string representation of a
URL and, “under the hood”, construct an appropriate EPR. Other methods may
require an EPR instance, but it can generally be constructed by just specifying the
URL. For client applications, the source of the EPR is either created from a well-
known URL (such as the address of the Index Service), or discovered at runtime
using the Discovery API.

Obtaining an EPR for a Service
As mentioned above, the first step in communicating with a caGrid service is
obtaining an appropriate EPR (though Introduce-generated clients do provide the

caGrid 1.2 User’s Guide

 38

shorthand constructors that simply take a string representation of the service’s
URL). Often the address of a service of interest is not a “well known” value, and is
something that is discovered at runtime. caGrid provides the means to discover
services of interest by querying a live registry of available caGrid services. All
caGrid services are required to publish standard metadata (described in the caGrid
Metadata Design Document) that describes their functionality. This information is
aggregated in the aforementioned registry (Index Service), and can be used to find
out information about the currently running services, including their current EPRs.
Building on this information, a Discovery API is provided with caGrid that facilitates
the querying of this information toward the aim of discovering service EPRs. An
overview of this process is shown in Figure 4-2.

Figure 4-2 caGrid Advertisement and Discovery Overview

The Discovery API is intended to be used by any applications or services that wish
to consume of data, analytics, and core services provided by caGrid. While there
are still cases when interacting with a particular instance of a service is desired, the
Discovery API provides a means by which applications can locate services by the
information or capabilities they provide. One of the key advantages of the grid
approach to caBIG is the dynamic discovery of available resources.

In order to make use of the Discovery API, the discovery process must be
“bootstrapped” using a well-known service address of an Index Service. The default
constructor of the DiscoveryClient, the main interface to the Discovery API, should
default to the official NCI Index Service. However, this behavior can be modified by
using the constructor that takes the Index Service URL, or by calling the appropriate
setter method (setIndexEPR). Additional details on this, as well as all Discovery API
information, can be found in the Discovery section of the caGrid 1.2 Programmer’s
Guide.

The simplest discovery scenario, shown in Figure 4-3, is to just query the Index
Service for all registered services. The boolean value specified in line 3, indicates
whether services should be ignored if they do not expose the caGrid standard
metadata. In most application scenarios, a value of “true” is used, as services

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/frs/?group_id=25

Developing Client Applications

 39

without standard metadata are either: not compliant, not properly configurable, or
inaccessible (e.g. behind a misconfigured firewall).

Figure 4-3 Discovering All Services

As shown in the example on line 3, the method returns an array of EPRs. This is
true of all discovery operations. The EPRs in the array represent the services
matching the specified criteria (in this case just that it is a valid caGrid service), and
can be used to create clients to invoke operations on the corresponding services
(detailed later).

There are many discovery operations available in the DiscoveryClient. They provide
a range of capabilities from “full text search” suitable for a freeform webpage-like
interface, simple text-based criteria such as specifying operation names or concept
code, and complex criteria (“query by example”) such as specification of point of
contact information or UML class criteria.

While there are many discovery methods that take a UMLClass prototype, to
discover services based on data types, an example is shown below in Figure 4-4.
This method, discoverServiceByOperationInput, locates services that provide an
operation that takes, as input, an instance of the specified data type. The example
below shows services that provide operations that take caBIO’s Gene instances as
input. This prototype object can be as partially populated as desired (such as only
specifying the package name, or being more explicit in specifying the exact project
name and version).

Figure 4-4 Discover Services by Input

Additionally, there are methods to discover services by “type”. For example, there
are several methods named like discoverDataServices*, which only return services
that implement the standard Data Service operations. Services may also be
discovered by identifying the concept code matching the service type of interest,

and invoking the discoverServicesByConceptCode method, which searches for
services based on concepts applied to the service. There is a concept representing
“Grid Service” in the ontology and derived concepts such as “Analytical Grid

caGrid 1.2 User’s Guide

 40

Service” and “Data Grid Service”. It is expected additional concepts will be derived
in the future, as driven by the community.

Inspecting a Service’s Metadata
Depending on how specific the discovery criteria which was used to discover
services, it is possible there will be many services returned, and it may be
necessary to find out additional information about the matching services in order to
select which one should be used.

The Metadata API provides the ability to obtain a Java bean representation of
standard metadata by simply providing an EPR of the service of interest (such as
those returned from the discovery methods). The main interface to this API is the
MetadataUtils class, which contains a number of static methods. An example of
using this API, shown below in Figure 4-5, demonstrates accessing a service’s
standard ServiceMetadata, which is common to all caGrid services. As described
above, the first step is to obtain an appropriate EPR (line 1). Given this EPR, the

MetadataUtils’ getServiceMetadata method, shown on line 4 in Figure 4-5, can be
used to obtain the bean representation of the metadata. Upon successful
completion of this method, the fully populated bean can be inspected to obtain the
information of interest. Several exceptions, sub classed from the base

ResourcePropertyRetrievalException, can be thrown by this operation. A non-
discriminating client may choose simply to handle this base exception. Additional
details on the other exceptions, and why they may be throw, is described in the
Metadata section of the caGrid 1.2 Programmer’s Guide.

Figure 4-5 Accessing Standard Service Metadata

Given an instance of ServiceMetadata, all information required by caGrid standard
metadata can be inspected. This and all of its fields are standard, logic-less Java
beans, and can be inspected by invoking the appropriate getters. Additionally, the
Metadata API provides the capability to write the instances to XML for storage or
display.

http://gforge.nci.nih.gov/frs/?group_id=25

Developing Client Applications

 41

Details of the content of the metadata can be found in the caGrid Metadata design
document, as well as an overview in the Metadata section of the caGrid 1.2 Programmer’s
Guide, but it is worth noting, as shown in Figure 4-2, a majority of the standard metadata is
derived from extracting information from the caDSR and EVS. As such, the caDSR grid
service, and the EVS grid service can also be used, respectively, to find out additional
information about the data types and semantics relevant to the service. For example, many
aspects described in the metadata (services, operations, classes, attributes, etc) have

associated SemanticMetadata items, which describe the semantics of the item, including its
EVS-maintained concept code. This code can be used to locate the concept in EVS and
navigate the ontology, determining further semantic relevance. As another example, the
metadata about each operation’s input and output define the caDSR registered Project from
which they came. The caDSR grid service can be used to find out additional information
about that Project, and the rest of its model.

Invoking Operations on a Service
The end goal of discovering services and inspecting their metadata is generally to
select an appropriate service and invoke operations it provides. This may be the
execution of analytical routines, querying for data, or invocation of a core caGrid
service.

While the grid makes it possible to dynamically invoke services for which a client
has no APIs (and this is true for caGrid services), this is generally not the procedure
clients or applications follow (clients interested in this, however, may search the web
for “dynamic service invocation”). Generally, the API for the service is already
available, and just “bound” to the particular service of interest at runtime. For
example, to query any caGrid Data Service, a common client API can be used,
regardless of the type of data it exposes. Applications built to query data services
generally would build against this API. For Analytical Services, however, it is more
likely a client API specific to a type of analytical service would be used, and, again,
instances of that service would be bound to it at runtime. In both cases, the
application developer would just make use of a pre-provided client API. The caGrid
infrastructure makes this process as simple as using a using a local API; each
provided client APIs takes a service’s EPR or address in its constructor, and then
the API’s methods can simply be invoked. The APIs take care of all of the grid
communication, handling security, and XML serialization and deserialization. All
caGrid core service APIs are provided with caGrid, and when a service is built using
Introduce, a client API for that service is also created. It is expected a common
location for service clients will be available for caBIG (on GForge). All the examples
that show the communication with services provided in this document or the caGrid
1.2 Programmer’s Guide are examples of such APIs. In the absence of these client
APIs, more limited “stub” client APIs can also be generated by the grid tools by
downloading the service’s WSDL (the Globus documentation provides some details
on this).

One instance where a client or application may wish to invoke operations on a
service without having previously downloaded a client API is the construction of a
workflow. The caGrid workflow infrastructure provides the mechanism to describe
service invocations using a workflow language (BPEL), and request the workflow
service perform the invocation. Further details on the workflow infrastructure can be
found in the caGrid 1.2 Programmer’s Guide.

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0
http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/frs/?group_id=25
http://gforge.nci.nih.gov/frs/?group_id=25

caGrid 1.2 User’s Guide

 42

Client Application Case Study: caArray
caArray is an open source microarray data management system that allows users to
submit, annotate and download microarray data. caArray was developed using the
caBIG compatibility guidelines, as well as the Microarray Gene Expression Data
(MGED) society standards for microarray data. Compatibility with these standards
and guidelines will facilitate data sharing and integration of diverse data types
including clinical, imaging, tissue and functional genomics data. A number of
analytical tools that connect to caArray are already available, including
geWorkbench and GenePattern that both provide a variety of data analysis,
visualization and annotation functions for microarray and other data types. The
caArray MAGE-OM Grid Service API is a caGrid Data Service that exposes the
functionality of MAGE-OM API over the grid. The Grid Service provides access to
data in the caArray database via a web service call issued to a dedicated Grid
Service server at NCI or any other site with an accessible caArray MAGE-OM Grid
Service installation.

caArray Discovery Example
Discovery is performed by querying the Index Service for a list of Endpoint References
(Figure 4-6). The Discovery Client is identified by the Index Service Endpoint Reference
constructed from a URL; here the caTRIP Index Service is pointed to. It provides a number
of utility methods for querying the Index Service. The example shows getting all of the
services and then querying by the Domain Model of caArray (Figure 4-7).

String url = "http://cagrid-

index.nci.nih.gov:8080/wsrf/services/DefaultIndexService";

DiscoveryClient dclient = new DiscoveryClient(url);

for (EndpointReferenceType epr : dclient.getAllServices(false)) {

 System.out.println(epr);

}

EndpointReferenceType[] eprs =

dclient.discoverDataServicesByDomainModel("caArray");

System.out.println(eprs[0]);

Figure 4-6 caArray Discovery Example

Address: http://array.nci.nih.gov/wsrf/services/cagrid/CaArraySvc

Address: http://165.112.132.241:18080/wsrf/services/cagrid/CaArraySvc

Address: http://caarraydb-stage.nci.nih.gov:80/wsrf/services/caGrid/CaArraySvc
...

Figure 4-7 Results from the caArray Discovery Example

caArray Metadata Example
Service-level metadata can be retrieved from any caGrid 1.2 grid service. This
includes information such as the publisher of the service, the methods exposed, and
the domain model used. The service is identified by an Endpoint Reference and
metadata is retrieved using the MetadataUtils class (Figure 4-8). The service-level
metadata can be retrieved, as well as the domain model. This example
demonstrates getting the display name of the hosting research center, as well as the
domain model project name (Figure 4-9).

http://array.nci.nih.gov/wsrf/services/cagrid/CaArraySvc
http://165.112.132.241:18080/wsrf/services/cagrid/CaArraySvc
http://caarraydb-stage.nci.nih.gov/wsrf/services/caGrid/CaArraySvc

Developing Client Applications

 43

String url = "http://caarraydb-

stage.nci.nih.gov:80/wsrf/services/caGrid/CaArraySvc";

EndpointReferenceType epr = new EndpointReferenceType(new URI(url));

ServiceMetadata metadata = MetadataUtils.getServiceMetadata(epr);

System.out.println(metadata.getHostingResearchCenter().getResearchCenter().

getDisplayName());

DomainModel model = MetadataUtils.getDomainModel(epr);

System.out.println(model.getProjectShortName());

Figure 4-8 caArray Metadata Example

NCI Center for Bioinformatics

caArray

Figure 4-9 Results from the caArray Metadata Example

caArray Invocation Example
A service client can be constructed by passing in a URL to the endpoint of the
service or an EPR (Figure 4-10). The client exposes all of the methods exposed by
the service. Input parameters should be constructed and passed into the desired
method, and the output of the method is returned (Figure 4-11). This example
demonstrates querying the caArray service for a specific microarray experiment
(Figure 4-12).

public CaArraySvcClient(String url) throws MalformedURIException,

RemoteException

public CaArraySvcClient(EndpointReferenceType epr) throws

MalformedURIException, RemoteException

Figure 4-10 Two constructors for the caTRIP Tumor Registry data service client

CQLQuery query = new CQLQuery();

Object target = new Object();

target.setName("gov.nih.nci.mageom.domain.Experiment.Experiment");

query.setTarget(target);

Attribute att = new Attribute();

att.setName("identifier");

att.setPredicate(Predicate.EQUAL_TO);

att.setValue("gov.nih.nci.ncicb.caarray:Experiment:1015897558050098:1");

target.setAttribute(att);

String url = "http://caarraydb-

stage.nci.nih.gov:80/wsrf/services/caGrid/CaArraySvc";

CaArraySvcClient client = new CaArraySvcClient(url);

CQLQueryResults results = client.query(query);

results.setTargetClassname(

 "gov.nih.nci.cagrid.caarray.stubs.mageom.domain.experiment.Experiment"

);

CQLQueryResultsIterator iter = new CQLQueryResultsIterator(results);

while (iter.hasNext()) {

 Experiment experiment = (Experiment) iter.next();

 System.out.println(experiment.getName());

}

Figure 4-11 caArray Invocation Example

caGrid 1.2 User’s Guide

 44

Gene Expression in Ovarian Cancer Reflects Both Morphology and Biological

Behavior

Figure 4-12 Results from the caArray Invocation Example

 45

Chapter 5 caGrid Security
This chapter describes the caGrid security infrastructure, which provides services
and tools to administer and enforce security policy.

Topics in this chapter include:

 Overview on this page

 GAARDS Administration User Interface on page 48

 Grid User and Host Management on page 48

 Grid Trust Service (GTS) on page 76

 Grid Grouper on page 105

 Authentication Management on page 139

 Authorization Management on page 142

Overview
The Grid Authentication and Authorization with Reliably Distributed Services
(GAARDS) infrastructure serves as the caGrid 1.2 Security Infrastructure (Figure
5-1). GAARDS provides services and tools for the administration and enforcement
of security policy in an enterprise Grid. GAARDS was developed on top of the
Globus Toolkit and extends the Grid Security Infrastructure (GSI) to provide
enterprise services and administrative tools for

 grid user management,

 identity federation,

 trust management,

 group/VO management,

 access control policy management and enforcement, and

 integration between existing security domains and the grid security domain.

caGrid 1.2 User’s Guide

 46

Figure 5-1 GAARDS Security Infrastructure

Figure 5-1 illustrates the GAARDS security infrastructure. In order for users and
applications to communicate with secure services, grid credentials are required,
which include a Grid User Account. Dorian is a grid user management service that

 hides the complexities of creating and managing grid credentials from users
and

 provides a mechanism for users to authenticate using their institution’s
authentication mechanism, assuming a trust agreement is in place between
Dorian and the institution.

Dorian provides two methods for registering for a grid user account:

 register directly with Dorian

 have an existing user account in another security domain.

It is anticipated that most users will use their existing locally provided credentials for
obtaining grid credentials and only users that are unaffiliated with an existing
credential provider should register directly with Dorian. In order to use an existing
user account to obtain grid credentials, the existing credential provider must be
registered in Dorian as a Trusted Identity Provider. It is anticipated that the majority
of grid user accounts will be provisioned based on existing accounts. The
advantages to this approach are:

 users can use their existing credentials to access the grid and

 administrators only need to manage a single account for a given user.

To obtain grid credentials, Dorian requires proof or a SAML assertion (see the
Dorian Design Guide for more details) that proves that the user is locally

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/security/dorian/caGrid-dorian-design.doc?cvsroot=cagrid-1-0

 caGrid Security

 47

authenticated. The GAARDS Authentication service provides a framework for
issuing SAML assertions for existing credential providers such that they may be
used to obtain grid credentials from Dorian. The authentication service also provides
a uniform authentication interface in which applications can be built. Figure 5-1
illustrates the process for obtaining grid credentials.

The user/application first authenticates with their local credential provider via the
authentication service and obtains a SAML assertion as proof they authenticated.

They then use the SAML assertion provided by the authentication service to obtain
grid credentials from Dorian. Assuming the local credential provider is registered
with Dorian as a trusted identity provider and that the user’s account is in good
standing, Dorian issues grid credentials to the user. It should be noted that the use
of the authentication service is not required; an alternative mechanism for obtaining
the SAML assertion required by Dorian can be used. If as user is registered directly
with Dorian and not through an existing credential provider, they may contact Dorian
directly for obtaining grid credentials.

Once a user has obtained grid credentials from Dorian, they may invoke secure
services. Upon receiving grid credentials from a user, a secure service
authenticates the user to ensure that the user has presented valid grid credentials.
Part of the grid authentication process is verifying that grid credentials presented
were issued by a trusted grid credential provider (for example, Dorian or other
certificate authorities). The Grid Trust Service (GTS) maintains a federated trust
fabric of all the trusted digital signers in the grid. Credential providers such as
Dorian and grid certificate authorities are registered as trusted digital signers and
regularly publish new information to the GTS. Grid services authenticate grid
credentials against the trusted digital signers in a GTS (shown in Figure 5-1).

Once the user has been authenticated, a secure grid service determines if a user is
authorized to perform what they requested. Grid services have many different
options available to them for performing authorization. The GAARDS infrastructure
provides two approaches that can each be used independently or can be used
together. It is important to note any other authorization approach can be used in
conjunction with the GAARDS authentication/trust infrastructure. The Grid Grouper
service provides a group-based authorization solution for the grid, wherein grid
services and applications enforce authorization policy based on membership to
groups defined and managed at the grid level. Grid services can use Grid Grouper
directly to enforce their internal access control policies. Assuming the authorization
policy is based on membership to groups provisioned by Grid Grouper; services can
determine whether a caller is authorized by simply asking Grid Grouper whether the
caller is in a given group.

The Common Security Module (CSM) is a more centralized approach to
authorization. CSM is a tool for managing and enforcing access control policy
centrally. Access control policies can be based on membership to groups in Grid
Grouper. Grid services that use CSM for authorization simply ask CSM if a user can
perform a given action. Based on the access control policy maintained in CSM,
CSM decides whether or not a user is authorized. In Figure 5-1, the grid services
defer the authorization to CSM. CSM enforces its group based access control policy
by asking Grid Grouper whether the caller is a member of the groups specified in
the policy.

caGrid 1.2 User’s Guide

 48

GAARDS Administration User Interface
The GAARDS Administration User Interface (Admin UI) is for administrating Dorian,
Grid Grouper, and the Grid Trust Service (GTS). The Common Security Module
(CSM) is administered through a separate interface called the CSM User
Provisioning Tool (UPT).

Launch the GAARDS Admin UI by typing ant security from the installation
directory. The GAARDS Admin UI is pre-configured to run with a default list of
settings bound to the distribution being used. The default configuration can be
modified by editing the UI configuration file ([Installation

Directory]/projects/security-ui/etc/security-ui-conf). The remainder of this
chapter describes how to administer each of the GAARDS services.

Grid User and Host Management
Managing users and provisioning accounts in the grid is complex. The Globus
Toolkit implements support for security via its Grid Security Infrastructure (GSI). GSI
utilizes X.509 Identity Certificates for identifying a user. An X.509 Certificate with its
corresponding private key forms a unique credential or so-called “grid credential”
within the grid.

Since grid credentials are long term credentials and are not directly used in
authenticating users to the grid, a short term credential called a grid proxy is used.
Grid proxies consist of a private key and corresponding long term certificate signed
by the long term grid credential private key. A Grid proxy is an extension to
traditional X.509 certificates providing the ability to delegate your credentials to
other services, as in the case of workflow.

Although this approach is effective and secure, it is difficult to manage in a multi-
institutional environment. Using the base Globus toolkit, the provisioning of grid
credentials is a manual process, which is far too complicated for users. The overall
process is further complicated if a user wishes to authenticate from multiple
locations, as a copy of their private key and certificate has to be present at every
location. Not only is this process complicated, securely distributing private keys is
error prone and poses a security risk. There are also many complexities in terms of
provisioning user accounts in an environment consisting of tens of thousands of
users from hundreds of institutions, each of which most likely has a user account at
their home institution.

Dorian is a grid service for the provisioning and management of grid users accounts.
Dorian provides an integration point between external security domains and the grid,
allowing accounts managed in external domains to be federated and managed in
the grid. Figure 5-2 illustrates an example usage scenario for Dorian. To obtain grid
credentials or a proxy certificate, users authenticate with their institution using the
institution’s conventional mechanism. Upon successfully authenticating the user, the
local institution issues a digitally signed Secure Access Markup Language (SAML)
assertion, vouching that the user has authenticated. The user then sends this SAML
assertion to Dorian in exchange for grid credentials. Dorian will only issue grid
credentials to users that supply a SAML assertion from a Trusted Registration
Authority.

 caGrid Security

 49

For example, in Figure 5-2, when a Georgetown user wishes to invoke a grid service
that requires grid credentials, he first supplies the application with his username and
password to the Georgetown credential provider as he would normally do. The
application client authenticates the Georgetown user with the Georgetown credential
provider, receives a signed SAML assertion which it subsequently passes to Dorian
in exchange for grid credentials. These credentials can then be used to invoke the
grid services. This illustrates how Dorian can leverage an institution’s existing
authentication mechanism and bring its users to the grid.

To facilitate smaller groups or institutions without an existing credential provider,
Dorian also has its own internal credential provider (which is registered as a Trusted
Registration Authority). This allows users to authenticate to Dorian directly, thereby
enabling them to access the grid. The Dorian credential provider provides
administrators with facilities for approving and managing users. All of the Dorian
functionality is made available through a grid service interface.

Figure 5-2 illustrates a scenario of a client using the Dorian IdP to authenticate to
the Grid. In this scenario, the unaffiliated user wishes to invoke a grid service. Given
that this unaffiliated user has registered and been approved for an account, she is
able to authenticate with the Dorian IdP by supplying her username and password.
Upon successfully authenticating the user, the Dorian IdP issues a SAML Assertion
just like institutional IdPs, which can be presented to Dorian in exchange for grid
credentials. The credentials can be used to invoke the grid service.

Figure 5-2 Dorian

Registration Authorities
The institutional credential providers that Dorian is configured to trust are referred to
as Trusted Registration Authorities (TRA). Dorian only creates credentials for users
whose identity assertions are signed by an TRA. The set of TRAs can be managed

caGrid 1.2 User’s Guide

 50

by Dorian administrators through its grid service interface. The Dorian grid service
interface provides functionality for adding, modifying, and removing TRAs, which
consist of the following:

 Id

 Name

 Status

 User Policy

 Certificate

 Acceptable authentication methods

The Id is a unique ID assigned by Dorian to identify the registration authority. The
Name is assigned by an administrator and provides a human readable name to
easily identify a registration authority. The Status specifies the current status of the
registration authority: Active or Suspended. Users associated with a “suspended”
registration authority will be refused access to Dorian and will be listed in the CRL of
the Dorian CA. Each registration authority is associated with a set of configurable
User Policies that are applied to each user when they authenticate. These policies
designate how Dorian should handle users from a specified registration authority. As
an example, a policy might dictate what to do when a new user tries to create grid
credentials for the first time. An automatic approval policy would automatically
register the user with Dorian and create a grid account for the user. A manual
approval policy would automatically register the user but not enable the grid account
until an administrator manually approves it. User policies can also be used to dictate
what to do when a user’s grid credentials expire. For example, an automatic renewal
policy would enable automatic creation of a new set of credentials using the Dorian
certificate authority, whereas a manual renewal policy would require an
administrator to do so. The User Policy framework is extensible; administrators can
implement local policies.

Each registration authority must also specify its own certificate. When Dorian
receives a SAML assertion signed by a registration authority it verifies that the
assertion was signed with the private key that corresponds to the registration
authority’s certificate. Finally, each registration authority must be configured with a
list of acceptable authentication methods. A SAML authentication assertion specifies
the method in which the credential provider authenticated the user. In order for the
SAML assertion to be accepted by Dorian, the authentication method specified in
the assertion must be specified as acceptable in the corresponding registration
authority.

Account and Certificate Creation
When a user first attempts to create a grid proxy using Dorian, a grid user account is
created for them. The account includes user information, user status, user role, and
a set of grid credentials including the associated grid identity. The user information
includes the user’s local institution id, the id of the registration authority the user is
associated with, and an email address. The user’s status corresponds to the user’s
current status: Active, Suspended, Pending, or Expired. Only users with an “Active”
status may access Dorian. A user’s role specifies whether or not the grid user is a
Dorian administrator. Only administrators may access the administrative

 caGrid Security

 51

functionality to manage trusted registration authorities or to manage grid accounts.
A user’s grid credentials consist of a certificate and private key, signed by the
Dorian CA that are used by Dorian to issue grid proxy certificates. A user’s grid
identity is comprised of the Certificate Authority’s Subject DN (Distinguished Name),
the registration authority Id, and the user’s id at his institution. When a user’s grid
account is created the initial status of the account is “Pending”. As mentioned
earlier, if the registration authority has an Auto Approval User Policy in place, the
status will automatically be changed to “Active”, giving the user instant access to
Dorian. Administrators can update a user’s status and role, and can renew a user’s
credentials.

Grid Proxy Certificate Creation
Users authenticate with grid services using grid proxy certificates. Such a grid
“proxy” is a short-term credential (private key and certificate) that is created from a
user’s long-term grid credentials. Dorian facilitates the creation of grid proxies for its
users. To create a grid proxy the user supplies a proxy lifetime and the SAML
assertion provided by their credential provider to the Dorian client. The Dorian client
generates a new public/private key pair and sends the proxy lifetime, public key, and
SAML assertion to the Dorian Grid Service. The Dorian Grid Service validates the
SAML assertion and employs the user’s previously stored grid credentials (long term
certificate and private key) to create and sign a proxy certificate for the user-
supplied public key. The proxy certificate is then returned to the user. The proxy
certificate and locally generated private key can then be used as a grid proxy
credential to invoke secure grid services. It is important to note that throughout this
process no sensitive information, that is, private keys, are passed over the network.

Host Certificate Creation
In order to run secure services securely, the container hosting the services must run
with a host credential. A host credential consists of an X.509 certificate and a private
key. The Dorian issues host certificates to users who possess a user certificate
issued by the Dorian CA. Valid users may request a host certificate from Dorian.

To request a host certificate, a user must do the following:

7. Authenticate with Dorian using their grid proxy.

8. Specify a host name for the certificate.

Generate an RSA public/private key pair which will make up the host credentials.
From the key pair the public key is sent to Dorian as part of the request and the
private key should be securely maintained by the user. All certificate requests
require approval of a Dorian administrator. If a Dorian administrator approves the
certificate request, a host certificate will be created and signed with the Dorian CA
private key. The host certificate contains the public key provided by the user and
together with the private key securely maintained by the user will make up a host
credential. Each host certificate issued by Dorian is bound to a user or owner,
generally the users that requested it; however an administrator may assign a new
owner. If the owner’s account is revoked, compromised, or suspended, any host
certificates bound to them will be suspended as well.

caGrid 1.2 User’s Guide

 52

Installing and Configuring Dorian
To install and configure Dorian, do the following.

 Install prerequisite software (see page 52).

 Build Dorian (see page 52)

 Configure Dorian (see page 53)

 Obtain host credentials (see page 53)

 Configure a secure container (see page 55)

 Deploy Dorian (see page 55)

 Verify the installation (see page 55)

Step 1: Install Prerequisite Software

Confirm that you have installed the software in Table 5-1.

Software Version Description
Java SDK

Jsdk1.5 or higher The GTS is written in Java and requires the
Java SDK. After installing, set up an
environmental variable pointing to the Java
SDK directory and name it JAVA_HOME.

MySQL Mysql 4.1.x or
higher

For persisting the trust fabric and other
information.

Ant Ant 1.6.5 The GTS service along with the Globus Toolkit,
on which the GTS is built, uses Jakarta Ant for
building and deploying.

Globus Globus 4.0.3 The GTS is built on top of the Globus Toolkit.
The GTS requires the ws-core installation of
the Globus Toolkit.

Tomcat

(Only required
if deploying to
Tomcat)

Tomcat 5.0.28 The GTS can be optionally deployed as a Grid
Service to a Tomcat deployed Globus Toolkit.

Table 5-1 Dorian Software Prerequisites

Step 2: Build Dorian

Dorian is distributed as a standalone project as well as part of other projects such as
caGrid. Each of the distributions contains a dorian directory herein referred to as
DORIAN_LOCATION. To build Dorian type ant clean all from the DORIAN_LOCATION
directory.

Note: Depending on the Dorian distribution you may have to build the entire project that

Dorian is distributed with prior to building Dorian. For example, if you have

obtained a caGrid distribution this is required; if you received a Dorian standalone

distribution this is not required.

 caGrid Security

 53

Step 3: Configure Dorian

Dorian is configured through a single configuration file which is located at
DORIAN_LOCATION/etc/dorian-conf.xml. For simple deployments, modify only the
following configuration elements:

 Database Configuration

Dorian uses a MySQL database to persist account information. Dorian must
be modified such that it will interact with your MySQL database. To modify
the database configuration to interact with your database, set the values of
the host, port, username, and password elements.

 CA Subject Name

Dorian manages an internal certificate authority for signing user and host
certificates. The certificate authority is created the first time the service is
started. It is important that the subject of the CA certificate is unique and
meaningful to your deployment. To set the subject of the certificate authority
for you deployment edit the CASubject element. The default value of
C=US,O=abc,OU=xyz,OU=caGrid,CN=caGrid Dorian CA is provided as an
example.

Note: The configuration changes specified thus far are the minimum

configurations required for simple deployments of Dorian. Complete

details on configuring Dorian can be accessed by consulting the

following website:

http://www.cagrid.org/mwiki/index.php?title=Dorian:1.2:Administra

tors_Guide:Configuration

These details on this site include configuring some of the more advanced
features such as using a Hardware Security Module (HSM) for the
storage of keys or for details on integrating Dorian with the Grid Trust
Service (GTS).

Step 4: Obtain Host Credentials for Dorian

Dorian requires that it runs as a secure service. In order to run a secure service, the
container hosting the service must run with a host credential. A host credential
consists of an X.509 certificate and a private key. One of the features Dorian
provides is the ability to issue and manage host credentials. Although you may host
a credential elsewhere, Dorian has a command line utility that can be used to issue
a host credential for the container that it will run in. To leverage this command line
utility, type the following from a command prompt:

%> cd DORIAN_LOCATION

%> ant createDorianHostCredentials

You are immediately be prompted for the name of the host that will be running
Dorian. Enter the host name and press ENTER. At the prompt, enter a directory
where the host certificate and private key should be written and press ENTER. The
utility creates a host certificate and private key for Dorian and inform you where on
the file system they were written. The entire output of the program is shown below:

$ ant createDorianHostCredentials

Buildfile: build.xml

http://www.cagrid.org/mwiki/index.php?title=Dorian:1.1:Administrators_Guide:Configuration
http://www.cagrid.org/mwiki/index.php?title=Dorian:1.1:Administrators_Guide:Configuration

caGrid 1.2 User’s Guide

 54

setGlobus:

checkGlobus:

 [echo] Globus: C:\ext\ws-core-4.0.3

createDorianHostCredentials:

 [input] Please enter the host:

somehost.example.com

 [input] Please enter the directory to write out the host credentials:

c:/certificates

 [java] /C=US/O=abc/OU=xyz/OU=caGrid/OU=Dorian IdP/CN=dorian

 [java] Successfully created the host certificate:

 [java] Subject:

C=US,O=abc,OU=xyz,OU=caGrid,OU=Services,CN=host/somehost.ex

ample.com

 [java] Created: Thu Jun 21 19:21:45 EDT 2007

 [java] Expires: Sat Jun 21 19:21:45 EDT 2008

 [java] Succesfully wrote private key to

c:\certificates\somehost.example.co

m-key.pem

 [java] Succesfully wrote certificate to

c:\certificates\somehost.example.co

m-cert.pem

BUILD SUCCESSFUL

Total time: 29 seconds

Once the host credentials are obtained, configure Globus to trust the Dorian
Certificate Authority that issued those credentials by typing the following from the
command prompt:

%> cd DORIAN_LOCATION

%> ant configureGlobusToTrustDorian

Upon completion a similar output to the following should display:

$ ant configureGlobusToTrustDorian

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\ext\ws-core-4.0.3

configureGlobusToTrustDorian:

 [java] Succesfully configured Globus to trust the Dorian CA:

C=US,O=abc,OU=

xyz,OU=caGrid,CN=caGrid Dorian CA

 [java] Succesfully wrote CA certificate to

C:\Users\jdoe\.globus\certif

icates\2d45eee5.0

 [java] Succesfully wrote CA signing policy to

C:\Users\jdoe\.globus\cer

tificates\2d45eee5.signing_policy

BUILD SUCCESSFUL

Total time: 5 seconds

 caGrid Security

 55

Step 5: Configure a Secure Container

Once host credentials are obtained, use them to configure a secure container.
Dorian can be run from a secure Globus container or a secure Tomcat container.
For directions on how to configure a secure Globus container, please consult the
following website:

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-
To:SecureGlobusContainer

For directions on how to configure a secure Tomcat container, please consult the
following website:

http://www.cagrid.org/mwiki/index.php?title=CaGrid:ConfigureTomcat

Step 6: Deploy Dorian

Once a secure container is configured (Globus or Tomcat), deploy Dorian to that
container. To deploy Dorian to a secure Globus container, type the following from a
command prompt:

%> cd DORIAN_LOCATION

%> ant deployGlobus

To deploy Dorian to a secure Tomcat container, type the following from a command
prompt:

%> cd DORIAN_LOCATION

%> ant deployTomcat

Regardless of which container is selected, a significant amount of output should be
printed to the screen. If the deployment is successful, "BUILD SUCCESSFUL" is
output to the screen.

Step 7: Verify the Installation

Once Dorian is deployed, the installation and configuration of Dorian is complete.
Before verifying that the installation was successful, start the Dorian service by
starting the container that Dorian was deployed to. For directions on starting a
secure Globus container, please consult the following website:

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-
To:SecureGlobusContainer

To start a secure Tomcat container run the startup script (startup.sh or

startup.bat) located in TOMCAT_INSTALLATION_DIRECTORY/bin. When the
container starts, verify that the Dorian installation was successful by typing the
following from the command prompt:

%> cd DORIAN_LOCATION

%> ant ui

Complete the following steps in the Dorian Administration UI that opens:

9. Click Login. In the Login screen, select the following:

a. From the Dorian Service drop down menu:
https://localhost:8443/wsrf/services/cagrid/Dorian.

b. From the Authentication Service drop down menu:
https://localhost:8443/wsrf/services/cagrid/Dorian.

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:ConfigureTomcat
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
https://localhost:8443/wsrf/services/cagrid/Dorian
https://localhost:8443/wsrf/services/cagrid/Dorian

caGrid 1.2 User’s Guide

 56

c. In the User Id text box enter dorian.

d. In the Password text box enter password.

10. Click Authenticate.

You will be logged onto Dorian using the default administrator (dorian). If the login is
successful another window, similar to the one in

Figure 5-3, should open containing the details of your credential. This indicates
Dorian has been successfully installed and configured.

Figure 5-3 Dorian credentials window

Registering for an Account with the Dorian IdP
It is anticipated that most users will use their existing locally provided credentials for
obtaining grid credentials and only users that are unaffiliated with an existing
credential provider should register directly with Dorian. The Dorian Identity Provider
(DorianIdP) gives developers, smaller groups, research labs, unaffiliated users, and
other groups that do not have their own IdP, the ability to leverage Dorian. The
DorianIdP provides a method for prospective users to register for an account. When
users register they create a user id and password which they can subsequently use
to authenticate with the Dorian IdP. When a user authenticates, the Dorian IdP
provides the user with a SAML assertion, which can then be used to authenticate
with Dorian’s to create grid proxies. The DorianIdP provides mechanisms for
administrators to manage users; this includes modifying user information (name,
address, email, etc.), changing passwords, granting and revoking access, and other
administrative actions. All operations provided by the Dorian IdP are made available
through Dorian’s grid service interface. Administrative operations require
administrators to authenticate with a trusted grid proxy. The GAARDS UI provides a
method for perspective users to register with the Dorian IdP. To register with the
DorianIdP through the GAARDS UI, use the following steps:

 caGrid Security

 57

1. From the main menu in the GAARDS UI, select User Management > Local
Account > Registration.

2. To register, select the URI of the Dorian you wish to register with. Next
specify a username and password; this will be the username and password
that you use to authenticate with the Dorian IdP (Figure 5-4).

3. Finally enter your personal information and click Apply. In most cases your
account will need to be approved by an administrator before you will be able
to login. Depending on the policies of your administrator, you may be
contacted once your account has been approved as the Dorian IdP does not
provide an automated method of contacting you.

Figure 5-4 Registration window

Logging onto the Grid
The GAARDS UI provides the ability to create and manage grid proxies and
credentials. To obtain grid credentials, use the following steps.

1. Click the Login button on the toolbar in the GAARDS UI to open the Create
Proxy or login window (Figure 5-5)

caGrid 1.2 User’s Guide

 58

2. To login, specify the Dorian that maintains your grid user account by
selecting the Dorian URI from the Identity Federation Service drop down
menu.

3. The GAARDS UI is pre-configured with a list of Dorians through its
configuration file. If the Dorian you wish to select is not in the list, enter it.

4. Select the lifetime of your grid proxy; this is how long your credentials are
good for. Select from the Lifetime drop down menus for hours, minutes, and
seconds.

5. Specify how many times your credentials can be delegated. Delegating your
credentials gives another party the ability to act on your behalf or as you.

For example, if you allow a delegation path length of 1, you allow a grid
service you connect with to connect to another grid service as you. However,
the second grid service would not be able to connect to another grid service
as you. By default the delegation path length is set to 0, and in most cases it
will not need to be increased. To increase the delegation path length,
change the Delegation Path Length text field.

6. Specify the Authentication Service you wish to authenticate with by selecting
the URI from the Authentication Service drop down menu. After selecting
the Authentication Service you will be supplied with input fields to enter
information you need to authenticate.

7. Provide the information requested. In Figure 5-5, a Dorian IdP is selected.
Since the Dorian IdP requires a user id and password, input fields display.
The GAARDS UI is pre-configured with a list of Identity Providers.

8. If your Identity Provider is not listed in the Identity Provider drop down
menu, add it by editing the GAARDS UI configuration file.

9. Once you have entered the required IdP Authentication Information, click
Authenticate to 1) authenticate you with your Identity Provider, 2) obtain a
SAML Assertion from your Identity Provider, and 3) contact Dorian using the
SAML Assertion to facilitate the creation of a grid proxy. Once the grid proxy
is created the Create Proxy window closes and the Proxy Manager window
opens with the newly created proxy shown. The Proxy Manager window
allows the management of grid proxies or grid credentials that you locally
created. For details on the Proxy Manager window, refer to the next section
Managing Grid Credentials.

10. Click Set Default.

 caGrid Security

 59

Figure 5-5 GAARDS UI login window

Managing Grid Credentials
The Proxy Manager window allows the management of grid proxies or grid
credentials that have been locally created. This window is accessible after logging
into Dorian or it is directly accessible through the GAARDS UI as follows.

1. Click the Credential Manager button on the toolbar in the GAARDS UI. The
Select Proxy drop-down menu contains a list of all the non-expired proxies
that you created with the addition of the default proxy (Figure 5-6). Generally
Globus clients use the default proxy to connect to grid services if no other
proxy is specified.

2. To set the default proxy, select the proxy you wish to make the default from
the Select Proxy drop down menu and click Set Default. Selecting a proxy
from the drop down menu displays some information about the proxy as well
as the certificate chain for the proxy. The Proxy information includes the
subject of the proxy certificate, the issuer of the proxy certificate, the grid
identity, the strength of the proxy certificate, and when the proxy expires.
The certificate chain table lists each certificate in the proxies certificate
chain, with the proxy certificate listed first.

3. View the details of a certificate in the chain by selecting it and by clicking
View Certificate.

4. Finally, delete a proxy by selecting it from the Select Proxy drop-down
menu and click Delete Proxy.

caGrid 1.2 User’s Guide

 60

Figure 5-6 Proxy Manager window

Requesting and Managing Host Credentials
In order to run secure services securely, the container hosting the services must run
with a host credential. A host credential consist of an X.509 certificate and private
key. Dorian provides a means for users with a grid user account to request a host
credential for their services. To request a host credential, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. Select MyAccount > Request a Host Certificate to launch the Request a
Host Certificate window (Figure 5-7).

4. From the Service URI drop down menu, select the URI of the Dorian you
wish to request a host certificate from.

5. In the Host text box, enter the name of the host you are requesting host
credentials for.

6. Specify the directory on the file system where the host credentials should be
written by clicking Browse.

7. Click Request Certificate. The UI submits the host certificate request to
Dorian and, upon receiving it, Dorian either immediately approves the
request or submits the request to the administrator for approval. When the
request is immediately approved, the host credentials (certificate and private
key) are written to the directory specified. The file containing the certificate is
named THE_HOSTNAME_YOU_ENTERED-cert.pem and the file containing
the private key is named THE_HOSTNAME_YOU_ENTERED-key.pem.

 caGrid Security

 61

Figure 5-7 Request Host Certificate window

When a host certificate request requires approval of an administrator, the file
containing the private key is THE_HOSTNAME_YOU_ENTERED-key.pem. The
host certificate will not be written since it is not issued until the request is approved.
The GAARDS Admin UI provides a means of checking the status of your host
certificates request(s). To check the status of a host certificate request use the
following steps:

1. Launch the GAARDS UI.

2. If you have not done so, logon to the Grid using your user account.

3. Select MyAccount > My Host Certificates to launch the My Host
Certificates window.

4. From the Service URI drop down menu, select the URI of the Dorian you
wish to request a host certificate from.

5. Click Find Host Certificates.

All the host certificates that are bound to your user account are listed. For each host
certificate listed, the current status (Active, Suspended, Rejected, Pending,
Suspended) of that host certificate displays. If the status of your certificate request is
Pending your request has not yet been reviewed by an administrator. If the status is
Rejected your request was rejected and a host certificate will not be issued. If the
status is Active your request was approved by an administrator and your certificate
is ready to be downloaded. To download and save your certificate to the file system,
use the following steps:

1. Select the certificate from the table at the bottom of the My Host Certificates
window (Figure 5-8).

2. Click View Host Certificate to open a window containing the details for the
selected host certificate.

3. Click the Certificate tab.

caGrid 1.2 User’s Guide

 62

4. Click Save Certificate to open a file browser window.

5. Browse to the directory you initially specified when you made the certificate
request

6. In the File name text field enter THE_HOSTNAME_YOU_ENTERED-
cert.pem

7. Click Save.

Figure 5-8 My Host Certificates window

Administrating Dorian

Default Administrator Account

When Dorian is first run, it creates an administrative account with the username
dorian within the Dorian IdP. By default the Dorian user is able to administer both
the Dorian IdP and all aspects of the identity management and federation
components of Dorian. The default password for the dorian account is password; it
is recommended that you change the password immediately through the local user
management interface of the Dorian IdP. In the future, you may wish to provision
administrative rights to other or “real” users once they have Dorian accounts, at
which time you can disable or revoke privileges on the dorian account.

Managing Trusted Identity Providers

In order for Dorian to issue grid proxies to a user using their institution provided
credentials, the institution’s Identity Provider (IdP) must be registered with and
trusted by Dorian. IdPs registered with and trusted by Dorian are referred to as
Trusted Identity Providers (Trusted IdPs). The set of Trusted IdPs can be managed

 caGrid Security

 63

by Dorian administrators through the GAARDS UI, which provides the ability for
remotely adding, modifying, and removing Trusted IdPs. A Trusted IdP consists of
the following information: IdP Id, IdP Name, IdP Status, User Policy, Certificate,
acceptable authentication methods, and attribute specifications. The IdP Id is a
unique id assigned by Dorian to identify the IdP. The IdP name is assigned by an
administrator and provides a human readable name to easily identify an IdP. The
IdP Status specifies the current status of the IdP: Active or Suspended. The status
of an IdP allows an administrator to easily grant or suspend access to the grid for all
users associated with an IdP. Each Trusted IdP is associated with a set of
configurable User Policies that are applied to each user when they authenticate.
These policies designate how Dorian should handle users from a specified Trusted
IdP. Policies generally dictate what to do when a new user is encountered and what
to do when a user’s long term certificate expires. Currently Dorian supports four
policies:

 Auto Approval / Auto Renewal – A new user is automatically registered
and given access to the grid (user’s status is active). When a user whose
long term certificate expires, it is automatically renewed.

 Auto Approval / Manual Renewal – A new user is automatically registered
and given access to the grid (user’s status is active). When a user whose
long term certificate expires, an administrator is required to manually renew
it.

 Manual Approval / Auto Renewal – A new user is automatically registered
but not granted access, and an administrator is required to grant access
(user’s status is pending). When a user whose long term certificate expires,
it is automatically renewed.

 Manual Approval / Manual Renewal – A new user is automatically
registered but not granted access, and an administrator is required to grant
access (user’s status is pending). When a user whose long term certificate
expires, an administrator is required to manually renew it.

When Dorian receives a SAML assertion from a Trusted IdP it verifies that the
assertion was signed with the private key that corresponds to the Trusted IdP’s
certificate. Thus the Trusted IdP’s certificate must be specified. Each Trusted IdP
must be configured with a list of acceptable authentication methods. A SAML
authentication assertion specifies the method in which the Trusted IdP authenticated
the user. In order for the SAML assertion to be accepted by Dorian, the
authentication method specified in the assertion must be specified as acceptable in
the corresponding Trusted IdP. Dorian requires the SAML assertions provided by
Identity Provider’s to specify four attributes which are maintained by Dorian for each
user, such that Dorian and its administrators may effectively administrate grid user
accounts.

These attributes include

 user’s local unique user id within the IdP,

 user’s first name,

 user’s last name, and

 user’s email address.

caGrid 1.2 User’s Guide

 64

In a SAML Assertion, attributes are specified with a namespace and name. Because
the naming of attributes may differ from IdP to IdP, Dorian does not place
requirements on how the attributes are named within the SAML Assertion so long as
the values of the attributes meet Dorian’s formatting requirements. Therefore the
namespace and name of each of the four attributes must be specified for each
Trusted IdP, such that Dorian knows what to look for when it receives a SAML
assertion from the IdP. To manage Trusted IdPs through the GAARDS UI, use the
following steps.

1. Select User Management > Grid Account Management > Trusted
Identity Provider(s) to open Trusted Identity Provider Management window
(Figure 5-9). All the IdPs trusted by a Dorian are listed

2. From the Service drop down menu, select the service URI of the Dorian you
wish to list the Trusted IdPs of. If it is not in the list enter it manually.

3. From the Proxy drop down menu, select the proxy or credentials to use to
authenticate to Dorian. This must be a proxy of a Dorian administrator.

4. Click Find Trusted Identity Providers. The Trusted IdPs are listed in the
table below the progress bar. The list includes the Trusted IdP’s id, human
readable name, and status. In the example below, there are two Trusted
IdPs listed; the first is Dorian’s Local IdP and the second is the Ohio State
University IdP. Thus in the example in Figure 5-9, Dorian would accept
credentials from its local IdP and from the Ohio State University.

Figure 5-9 Trusted Identity Provider(s) window

Adding a Trusted Identity Provider

To add a Trusted IdP to Dorian, use the following steps.

1. In the Trusted Identity Provider Management window, click Add Trusted IdP
to open the Add Trusted IdP window (Figure 5-10). The window has three
tabs, each of which requires information to be specified.

 caGrid Security

 65

a. IdP Information Tab - specify the name, status, user policy, and
acceptable authentication methods.

b. Certificate Tab - specify the certificate that corresponds to the private
key that is used by the IdP in signing SAML Assertions that is issues.
The certificate must be specified in PEM format. Click the Import
Certificate to open a file browser in to find the certificate.

c. Attributes Tab - specify the namespace and name that the IdP uses for
representing each of the four required attributes in its SAML assertions,
such that Dorian knows how to retrieve the attributes from the IdP’s
SAML assertions.

2. Once you have specified all the required information, click Add to add the
IdP to Dorian as a Trusted IdP. Assuming you set the status of the newly
added IdP to active, Dorian immediately begins accepting SAML assertions
from the IdP.

Figure 5-10 Add Trusted IdP window

Viewing and Updating a Trusted Identity Provider

To view and update a Trusted IdP, use the following steps.

1. In the Trusted Identity Provider Management window, select the Trusted IdP
of interest and click View/Edit Trusted IdP to open the Trusted IdP window.
This window has three tabs:

a. IdP Information Tab - updates the name, status, user policy, and
acceptable authentication methods.

b. Certificate Tab - updates the certificate that corresponds to the private
key that is used by the IdP in signing SAML Assertions that is issues. If

caGrid 1.2 User’s Guide

 66

you update the certificate it must be specified in PEM format. Click
Import Certificate to open a file browser to find the certificate.

c. Attributes Tab - update the namespace and name that the IdP uses for
representing each of the four required attributes in its SAML assertions.

Once you have finished updating the Trusted IdP’s information, click Update to
commit the changes, which take effect immediately.

Removing a Trusted Identity Provider

To remove a Trusted IdP, select it from the Trusted Identity Provider Management
window and click Remove Trusted IdP. Removing a Trusted IdP removes all user
accounts associated with the IdP, revoking access to all users associated with the
IdP.

Grid User Account Management

Managing grid users and provisioning grid user accounts is the ultimate goal of
Dorian. Grid user accounts are created the first time the user attempts to create a
grid proxy with a SAML Assertion signed by a Trusted Identity Provider. For each
user Dorian maintains a local user id within their IdP, the user’s first name, the
user’s last name, and the user’s email address. The information is obtained from the
SAML Assertion presented to Dorian when creating a proxy. When a user account is
created, Dorian creates a long term certificate and private key for the user, the
user’s certificate is signed by Dorian’s certificate authority. Dorian maintains the
user’s private key and certificate locally and never distributes it to anyone. Dorian
uses the user’s private key and certificate in creating and signing grid proxies, in
which the user will use to authenticate to grid services. The subject of the user’s
certificate is composed of 1) Information from Dorian’s CA subject, 2) The id of the
user’s IdP, and 3) the user’s local id within the IdP, giving each user a unique
identity in the grid. Each user account also has an associated status: Active,
Suspended, Pending, or Expired. Only users with an Active status are allowed
access to the grid. When a grid user account is first created, the initial status of the
account depends on the user policy configured with the user’s IdP. If a manual
approval policy is specified, the initial status of the grid user account will be
Pending, if an automatic approval policy is specified, the initial status of the grid user
account is Active. When a user’s long term certificate expires, the status of the
user’s account is set to Expired if the user’s IdP specifies a manual renewal policy.
In this case an administrator will have to manually renew the user’s credentials to
grant the user access to the grid again. If however an auto renewal policy is
specified for the user’s IdP, Dorian automatically renews the user’s long term
certificate and private key, and the user’s account status remains Active. As
mentioned earlier, users whose account access is not Active will not be able to
create grid proxies; they will also be published in the Dorian Certificate Authority’s
Certificate Revocation List (CRL), which is published by Dorian to the Grid Trust
Service (GTS). Finally each user account is assigned a role within Dorian, either
User or Administrator. Users with the Administrator role may create grid proxies;
administrate Trusted IdPs, and grid user accounts within Dorian. Users with the
User role may only create grid proxies. Use the following steps to administrate grid
user accounts using the GAARDS UI.

 caGrid Security

 67

1. Open the Account Management window by selecting User Management >
Grid Account Management > Grid User Management (Figure 5-11).

2. From this window, you can search for grid user accounts managed by
Dorian, manage user accounts, and remove user accounts. To list all grid
user accounts managed by a Dorian, select the URI of the Dorian you are
interested in from the Service drop down menu. If the URI of the Dorian you
are interested in is not listed, enter it.

3. Select the grid proxy to use from the Proxy drop down menu. Select a proxy
of a Dorian administrator.

4. Finally, click Find Users to list all the grid user accounts managed by the
selected Dorian. To narrow your search, specify search criteria. Dorian
supports the following search criteria on grid user accounts: Identity
Provider, user id, grid identity, first name, last name, email, and user status.
For example, to search for all the accounts that are pending administrative
approval, select Pending from the User Status drop down.

Figure 5-11 Account Management window

User Management

Use the following steps to manage individual grid user accounts through the
GAARDS UI.

1. From the Account Management window, select the user of interest and
click Manage User.

2. From the Manage User window (Figure 5-12), you can view the user's
information or change a user’s account status. For example, in the case that
the user’s IdP requires manual approval you may change the status from

caGrid 1.2 User’s Guide

 68

Pending to Active. To revoke a user’s access to the grid, change the user’s
account status to Suspended.

3. To commit changes made to a user’s status, click Update User, which
reflects the changes immediately.

Alternatively, you may renew a user’s long term certificate and private key.
You may want to do this if they have expired or if they are going to expire.
Details on the user’s long term certificate can be found in the Certificate tab.
To renew a user’s long term certificate and private key, click Renew
Credentials.

Figure 5-12 Manage User window

Removing a Grid User Account

To remove individual grid user accounts through the GAARDS UI, open the Account
Management window, select the user to remove, and click Remove User. Note that
if you remove a grid user account for a user, a new one will automatically be created
if they try to create a proxy again. Thus removing an account does not always
revoke access to the grid. To disable access to the grid, change the user’s account
status to Suspended. In most cases grid user accounts should only be removed if
they are no longer affiliated with their Identity Provider.

Managing Administrators

Only users that have been granted administrative access to Dorian will be able to
access the administrative features of Dorian. The administrative features include
Account Management, Managing Trusted Identity Providers, and the ability to grant
administrative access to users. When Dorian is started for the first time, the dorian
user or the default user has administrative access. The dorian user can be used to
assign administrative privileges to other users. Note that being granted

 caGrid Security

 69

administrative access does allow the administration of the Local Dorian Identity
Provider, which provides a separate mechanism for assigning administrative rights.

Administrative access to Dorian can be managed through the GAARDS UI. To
manage administrative access to Dorian using the GAARDS UI, use the following
steps.

1. Select User Management > Grid Account Management > Administrators
from the main menu. The Administrator window (Figure 5-13) appears,
where you can list all users with administrative access, grant a user
administrative access, or revoke a user's administrative access.

2. To list the grid identities of all the entities with administrative access to
Dorian, click List Administrators. They are listed in the Administrators table
at the bottom of the screen.

3. To revoke a user's administrative access to Dorian, select the user from the
Administrators table and click Remove Admin.

4. To grant a user administrative access to Dorian click Add Admin. The Add
Administrator window appears. At the prompt, enter the grid identity of the
user you wish to grant administrative access to directly or click Find to
search for the user.

Figure 5-13 Administrator window

Host Credential Management

In order to run secure services securely, the container hosting the services must run
with a host credential. A host credential consists of an X.509 certificate and private
key. Dorian provides a means for users with a grid user account to request a host
credential for their services. For each host credential request and each host
credential issued Dorian maintains a host credential record. Dorian assigns each
host credential record one of the following statuses:

caGrid 1.2 User’s Guide

 70

 Pending - Host credentials that have been requested but not yet issued
because they require approval of an administrator.

 Rejected - Host credentials that have been requested but were not issued
because the request was rejected by an administrator.

 Active - Host credentials that have been issued.

 Suspended - Host credentials that were issued but have been temporarily
revoked.

 Compromised - Host credentials that were issued and are permanently
revoked.

Host credentials issued by Dorian are bound to a grid user account managed by
Dorian. In most cases, a host credential is bound to the user that requested the
credential. This binding makes users responsible for any host credentials bound to
their account. If a user's account is suspended, any host credentials bound to their
account will be revoked and listed in the Dorian CA URL. If a user's account is
removed, the status of all the host credentials bound to their account is set to
Compromised. Each host certificate record is assigned an owner, or the user who
the credential is bound to.

The GAARDS UI provides a method of finding/browsing both requested and issued
host credentials. To find/browse host credentials use the following steps:

1. Open the Host Certificate Management window by selecting User
Management > Grid Account Management > Host Certificate
Management (Figure 5-14).

2. From the Service URI drop down menu, select the Dorian you wish to query.

3. From the Credential drop down menu, select the grid proxy you wish to use
to authenticate with Dorian. Only users with credentials of a Dorian
administrator are allowed access to this feature.

4. Click Find Host Certificates.

 caGrid Security

 71

Figure 5-14 Host Certificate Management window

5. All the host credential records managed by the Dorian specified are listed. If
you wish you may refine your search based on the following criteria:

 Record Id - Dorian assigns each host credential record an id. Specify
the record id to pull up a specific record.

 Host - The host name of host.

 Serial Number - The serial number of the certificate issued to the host.

 Subject - The subject of the certificate issued to the host.

 Status - The status of the host credential.

 Expiration - Search based on whether or not the certificate issued to the
host has expired. This is useful in determining which host certificates
need to be renewed.

 Owner - The grid user that the certificate is bound to.

Reviewing Host Credential Requests

Host credentials that require administrative review are assigned a status of Pending.
It is up to Dorian administrators to decide whether or not to approve a certificate
request based on the policy defined for their deployment. The GAARDS UI provides
a method for reviewing host credentials requests by using the following steps:

1. From the Host Certificate Management window, select a host credential
record with a Pending status.

caGrid 1.2 User’s Guide

 72

2. Click View/Update Host Certificate to open a window containing the details
of the host certificate record (Figure 5-15).

3. To approve a host credential request, click Approve Certificate.

To reject a host credential request, select Rejected from the Status drop
down menu and click Update Certificate.

Once the request is reviewed the details of the host certificate record are
immediately updated.

Figure 5-15 Host Certificate window

Viewing and Updating Host Credentials

A host credential's status and owner may be modified by a Dorian administrator as
long as the current status of the host credential is not Compromised. The GAARDS
UI provides a method for viewing/updating host credentials requests, by using the
following steps:

1. From the Host Certificate Management window, select a host credential
record.

Click View/Update Host Certificate to open a window containing the details of the host
certificate record (Figure 5-16).
To update a host certificate record, specify the change and click Update Certificate.

 caGrid Security

 73

Figure 5-16 Viewing/updating host credentials

Renewing Host Credentials

When Dorian issues host credentials it issues them for the amount of time specified
in the lifetime element in the Dorian configuration file. After that time the host
credentials expire and must be renewed by a Dorian administrator. The GAARDS UI
provides a method for renewing host credentials by using the following steps:

1. From the Host Certificate Management window, select a host credential
record. (To list all the expired host credentials set the value of the
Expiration drop down menu to true and click Find Host Certificates).

2. Click View/Update Host Certificate to open a window containing the details
of the host certificate record.

3. To renew a host credential request click Renew Certificate.

Local Dorian Identity Provider

It is anticipated that most users will use their existing locally provided credentials for
obtaining grid credentials and only users that are unaffiliated with an existing
credential provider should register directly with Dorian. The Dorian Identity Provider
(DorianIdP) gives developers, smaller groups, research labs, unaffiliated users, and
other groups that don’t have their own IdP, the ability to leverage Dorian. The
DorianIdP provides a method for prospective users to register for an account. When
users register, they create a user id and password which they can subsequently use
to authenticate with the Dorian IdP. When a user authenticates, the Dorian IdP
provides the user with a SAML assertion, which can then be used to authenticate
with Dorian’s to create grid proxies. The DorianIdP provides mechanisms for
administrators to manage users; this includes modifying user information (name,

caGrid 1.2 User’s Guide

 74

address, email, etc.), changing passwords, granting and revoking access, and other
administrative actions. All operations provided by the Dorian IdP are made available
through Dorian’s grid service interface. Administrative operations require
administrators to authenticate with a trusted grid proxy. The GAARDS UI also
provides a mechanism for Dorian IdP administrators to administrate Dorian IdP user
accounts.

Local Account Management

To manage local Dorian IdP account through the GAARDS UI, use the following
steps:

1. Select User Management > Local Account > Local Account
Management.

2. From the Local Account Management window, search for local user
accounts managed by the Dorian IdP, manage user accounts, and remove
user accounts (Figure 5-17). To list all local user accounts managed by a
Dorian IdP, select the URI of the Dorian you are interested in from the
Service drop down menu. If you do not see the URI of the Dorian you are
interested in, enter it.

3. Select the grid proxy to use from the Proxy drop down menu. Select a proxy
of a Dorian IdP administrator.

4. Click Find Users to list all the local user accounts managed by the selected
Dorian IdP. To narrow a search, specify search criteria. The Dorian IdP
supports the following search criteria on local user accounts: by status, by
role, and by user information (first name, last names, address, etc).

For example, if you want to search for all the accounts that are pending
administrative approval select Pending from the User Status drop down
menu.

 caGrid Security

 75

Figure 5-17 Local Account Management window

To manage individual local user accounts through the GAARDS UI, use the
following steps:

1. From the Local Account Management window select the user of interest and
click Manage User to open the Manage User window (Figure 5-18).

2. Change the user’s demographic information, which includes their first name,
last name, mailing address, organization, phone number, and email address.

A user’s demographic information can also be changed in the User
Information tab. Through the Account Information tab you can also change a
user’s account information. A user account information consists of their
status within the Dorian IdP (Active, Pending, Suspended, Rejected) and the
user’s role within the Dorian IdP (Administrator or NonAdministrator). Newly
registered users may have an account status of Pending meaning an
administrator has yet to approve their account. An account can be approved
by changing a user’s Pending status to Active. Likewise an account can be
rejected by changing a user’s status from Pending to Rejected. An account
can be temporarily suspended or permanently suspended by changing a
user’s status from Active to Suspended. A temporary account suspension
can be removed by changing a user’s status from Suspended to Active.

caGrid 1.2 User’s Guide

 76

Note: A User’s Status within the Dorian IdP has no relationship to a Dorian

grid user account status. Thus having an account in the Dorian IdP

does not guarantee that you will have a working grid user account;

this depends on the user policy configured for the Dorian IdP within

the Identity Federation component of Dorian. Likewise a user’s role

with the Dorian IdP has no relationship to a user’s role with the

Identity Federation component of Dorian. Although a Dorian IdP

user with an Administrator role in the Dorian IdP may administrate

local user accounts in the Dorian IdP, they may not administer grid

user accounts.

You may also change a user’s account password through the Change
Password tab.

3. To commit any changes made to a user’s Dorian IdP account, click the
Update User button; the changes are reflected immediately.

Figure 5-18 Manage user window

Grid Trust Service (GTS)
As grid computing technologies gain acceptance and adoption, the transition from
highly specialized grids with only a few institutional participants to a grid
environment with hundreds of institutions is becoming a reality. Security is of
primary importance in the grid and the support for secure communication,
authentication, and authorization is a critical requirement, specifically in settings
where sensitive data (e.g., patient medical information) must be accessed and
exchanged. Also needed are mechanisms to establish and manage “trust” in the
grid so that asserted identities and privileges can be verified and validated with the
required level of confidence. Within collaboration, it is clear that different institutions
have tiered levels of confidence in the users and service management policies of
various other institutions. While generally all institutions want to collaborate in some

 caGrid Security

 77

fashion, they have services with varying security policy enforcement requirements.
The interconnections between clients and services that are able to securely
communicate in the larger grid, form conceptual overlays of trust, which are herein
referred to as the “trust fabric” of the grid. Figure 5-19 shows an example trust fabric
composed of four trust groups (Trust Groups A-D), over a worldwide grid. The
establishment, provisioning, and management of the trust fabric are critical to the
scalability, maintenance and security of the grid and other web service
environments.

Figure 5-19 Example Grid Trust Fabric

Many components of the grid rely on having trust agreements in place. For example,
when a user wants to access a service, they are authenticated based on an identity
assigned to them. In the grid, clients and services authenticate with one another
using X.509 identity certificates. Grid Identities are assigned to users by authorities.
When a grid identity is asserted by an authority in the form of an X.509 identity
certificate, it is digitally signed by that authority. Relying parties make authentication
decisions based on whether or not the certificate presented is signed by a trusted
certificate authority (CA). Thus, authentication requires a trust agreement between
the consumers of X.509 identity certificates and the certificate authorities that issue
them.

In a grid environment, there may exist tens or even hundreds of certificate
authorities, each issuing hundreds if not thousands of certificates. To further
complicate the situation, in a dynamic multi-institutional environment, the status of
identities may be updated frequently. Identities and credentials can be revoked,
suspended, reinstated, or new identities can be created. In addition, the list of
trusted authorities may change. In such settings, certificate authorities frequently
publish Certificate Revocation Lists (CRL), which specify “black listed” certificates

caGrid 1.2 User’s Guide

 78

that the authority once issued but no longer accredits. For the security and integrity
of the grid, it is critical to be able to perform authentication and validate a given
identity against the most up-to-date information about the list of trusted certificate
authorities and their corresponding CRLs.

Each institution normally manages its own security infrastructure with its own CAs,
and all clients and services within such an administrative domain need to be
configured to trust the local trust roots. If collaborations span administrative
domains, then participating entities have to be configured to trust the trust roots
defined in the different organizations within the limits of their own local policies. The
required trust root configurations to participate in such Virtual Organizations (VO)
are complex, error prone, and security-policy sensitive. By centralizing the
configuration management and provisioning collaborating clients and services “on
demand”, one can ensure that the correct and up-to-date trust-root information is
made available. In this scenario, the central provisioning server becomes a trusted
entity itself, and clients need to be configured to trust its provisioning information. In
order to facilitate the trust in the provisioning servers, they should be locally known
to the clients, which requires local provision servers to aggregate and to front-end
remote ones.

The Grid Trust Service (GTS) is a Web Services Resource Framework compliant
federated infrastructure enabling the provisioning and management of a grid trust
fabric. The salient features of the GTS can be summarized as follows:

 It provides a complete grid-enabled federated solution for registering and
managing certificate authority certificates and CRLs, facilitating the
enforcement of the most recent trust agreements.

 It allows the definition and management of trust levels, such that certificate
authorities may be grouped and discovered by the level of trust that is
acceptable to the consumer.

 The federated nature of the GTS, coupled with its ability to create and
manage arbitrary arrangements of authorities into trust levels, allows it to
facilitate the curation of numerous independent trust overlays across the
same physical grid.

 The GTS can also perform validation for a client, allowing a client to submit a
certificate and trust requirements in exchange for a validation decision,
which allows for a centralized certificate verification and validation.

This section discusses the administration of the Grid Trust Service (GTS) and only
provides a brief overview of the GTS. For more information on the GTS, see the
GTS Design Document.

GTS and the Globus Toolkit
The Globus Toolkit implements support for security via its Grid Security
Infrastructure (GSI). GSI utilizes X.509 Identity Certificates for identifying a user. An
X.509 certificate with its corresponding private key constitutes a unique credential or
so-called “Grid credential” that is used to authenticate both users and services
within the grid. Under the current Globus release (4.0.3), the authentication process
ensures that the X.509 Identity provided by the peer was issued by a trusted
certificate authority (CA). However, one limiting issue with the current mechanisms

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-0/Documentation/docs/security/gts/caGrid-gts-design.doc?cvsroot=cagrid-1-0

 caGrid Security

 79

is that trusted CAs and their CRLs are maintained locally on the file system of each
Globus installation. When a client authenticates with a service, Globus locates the
root CA and CRL of the client’s Identity Certificate on the local file system. Once
located, the Globus runtime validates the Identity Certificate against the CA
certificate and CRLs. Although this approach is effective, it is difficult to provision CA
certificates and CRLs in a large multi-institutional environment, as one has to ensure
that all CA and CRL information must be copied to every installation and kept
current with the dynamically changing environment. The GTS solves this problem by
providing a Grid Service framework for creating, managing, and provisioning of a
federated Grid trust fabric. Through its service interface, the GTS provides the ability
to register and manage certificate authorities. Using the GTS, Grid entities (services
and clients) can discover the certificate authorities in the environment, decide
whether or not to trust a certificate authority, and determine the levels of trust
assigned to a certificate authority.

Figure 5-20 illustrates how the GTS can be used to enable the Globus Toolkit to
authenticate users against the latest trusted certificate authorities. To accomplish
this, the GTS provides a framework called SyncGTS, which is embedded in the
Globus runtime to automatically synchronize the local trust certificate store with the
latest trust fabric maintained in the GTS. Figure 5-20 illustrates how authentication
and certificate validation can be performed by leveraging the SyncGTS framework.
When a Grid service is invoked, Globus authenticates the client by validating that
the Grid proxy provided is signed by a trusted certificate authority. The certificate is
validated against a local store as illustrated in the figure. In Figure 5-20, the Dorian
certificate authority has been registered with the GTS as a trusted certificate
authority and Globus has been configured to synchronize its local trusted certificate
store with the GTS. Thus when the OSU user invokes a Grid service using her
Dorian-obtained proxy, she will be successfully authenticated by Globus.

caGrid 1.2 User’s Guide

 80

Figure 5-20 GTS Integration with Globus

Installation and Configuration
The Grid Trust Service (GTS) is distributed as standalone project as well as part of
other projects such as caGrid. Each of the distributions contains a gts directory
herein referred to as GTS_LOCATION. To install and configure the GTS, use the
following the steps.

Step 1: Install Software Prerequisites

Table 5-2 lists the software prerequisites for GTS.

Software Version Description
Java SDK

jsdk1.5 or higher The GTS is written in Java and requires the Java
SDK. After installing, set up an environmental
variable pointing to the Java SDK directory and
name it JAVA_HOME.

MySQL Mysql 4.1.x or higher For persisting the trust fabric and other information.

Ant Ant 1.6.5 The GTS service along with the Globus Toolkit in
which the GTS is built on, uses Jakarta Ant for
building and deploying.

 caGrid Security

 81

Software Version Description
Globus Globus 4.0.3 The GTS is built on top of the Globus Toolkit. The

GTS requires the ws-core installation of the Globus
Toolkit.

Tomcat

(Only
required if
deploying to
Tomcat)

Tomcat 5.0.28 The GTS can be optionally deployed as a Grid
Service to a Tomcat deployed Globus Toolkit.

Table 5-2 GTS Software Prerequisites

Step 2: Building the GTS

If you have obtained a source release of the GTS, you will need to build the GTS.
To build the GTS type the following from a command prompt:

%> cd GTS_LOCATION

%> ant clean all

Note: Depending on the GTS distribution it may be required to build the entire project

that the GTS is distributed with prior to building the GTS. For example, if you

obtained a caGrid source distribution this is required. If you received the GTS

standalone distribution this is not required.

Step 3: Obtain a Host Credential

Deployments leveraging the GTS to maintain the trust fabric are effectively
delegating their authentication responsibility to the GTS. Therefore it is imperative
the GTS instance(s) can be trusted. In order for the GTS to be trusted it must run
securely with a host credential (X.509 certificate and private key). It is critical that
this host credential be issued by an authority that the entities in the deployment
trust. If you already have a host credential or have a means of obtaining one please
do so and proceed to the next step; otherwise, for the purposes of this guide, it will
be shown how to create a certificate authority and use it to issue a host credential.
To create a certificate authority, use the following steps from a command prompt
(illustrated below):

1. cd GTS_LOCATION

2. Type ant generateCA

3. Enter the distinguished name (DN) for the CA (i.e O=xyz,OU=abc,CN=My
CA).

4. Enter the number of days that the CA will be valid for (i.e 3650)

5. Enter a password which will be used to encrypt the CA's private key.

6. Enter a file to write the CA private key to.

7. Enter a file to write the CA certificate to.

caGrid 1.2 User’s Guide

 82

%> cd GTS_LOCATION

%> ant generateCA

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\ext\ws-core-4.0.3

generateCA:

 [input] Please enter the DN for the new CA (ex. O=xyz,OU=abc,CN=My CA):

O=xyz,OU=abc,CN=My CA

 [input] Please enter the number of days the new CA will be valid for:

3650

 [input] Please enter a password for the new CA:

password

 [input] Please enter a location to write the new CA's private key:

cakey.pem

 [input] Please enter a location to write the new CA's certificate:

cacert.pem

 [java] Successfully create the CA certificate:

 [java] O=xyz,OU=abc,CN=My CA

 [java] CA Certificate Valid Till:

 [java] Fri Jun 23 12:47:10 EDT 2017

 [java] CA Private Key Written to:

 [java] cakey.pem

 [java] CA Certificate Written to:

 [java] cacert.pem

BUILD SUCCESSFUL

Total time: 46 seconds

Once a certificate authority is created, use it to issue host credentials. To create
host credentials, use the following steps from a command prompt (illustrated below):

1. cd GTS_LOCATION

2. Type ant createAndSignHostCertificate

3. Enter the location of the CA's private key.

4. Enter the password used to encrypt the CA's private key.

5. Enter the location of the CA's certificate.

6. Enter the name of the host.

7. Enter the number of days for which the host credentials should be valid.

8. Enter a location to write the host private key.

9. Enter a location to write the host certificate.

 caGrid Security

 83

%> cd GTS_LOCATION

%> ant createAndSignHostCertificate

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\ext\ws-core-4.0.3

createAndSignHostCertificate:

 [input] Please enter the location of the CA's private key:

cakey.pem

 [input] Please enter the CA's password:

password

 [input] Please enter the location of the CA's certificate:

cacert.pem

 [input] Please enter the Hostname [${env.HOST}]:

myhost

 [input] Please enter the number of days the host certificate will be

valid f

or:

365

 [input] Please enter a location to write the host key:

hostkey.pem

 [input] Please enter a location to write the host certificate:

hostcert.pem

 [java] Successfully create the user certificate:

 [java] O=xyz,OU=abc,CN=host/myhost

 [java] User certificate issued by:

 [java] O=xyz,OU=abc,CN=My CA

 [java] User Certificate Valid Till:

 [java] Wed Jun 25 13:58:37 EDT 2008

 [java] User Private Key Written to:

 [java] hostkey.pem

 [java] User Certificate Written to:

 [java] hostcert.pem

BUILD SUCCESSFUL

Total time: 52 seconds

Step 4: Configure Globus To Trust the GTS

In order for the GTS to be used to distribute trust roots Globus must be configured
to trust the CA that issued the host credentials obtained in the previous step. Place
a copy of the certificate for the CA that issued the host credentials in the Globus
trusted certificates directory. Unless otherwise specified during installation, the
Globus trusted certificate directory is usually USER_HOME/.globus/certificates.
Globus requires all CA certificates in its trusted certificates directory to be in PEM
format and to have a digit extension (0-9). For example, if a CA certificate is stored
in the file cacert.pem in PEM format than in order to configure Globus to trust this
certificate authority it should be copied to the directory
USER_HOME/.globus/certificates (create directory if needed) with the file name
cacert.0

Step 5: Configuring a Secure Container

Now that you have obtained host credentials, you may use them to configure a
secure container. The GTS can be run from a secure Globus container or a secure
Tomcat container. For directions on how to configure a secure Globus container

caGrid 1.2 User’s Guide

 84

consult the following web site:
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-
To:SecureGlobusContainer For directions on how to configure a secure Tomcat
container consult the following website:
http://www.cagrid.org/mwiki/index.php?title=CaGrid:ConfigureTomcat

Step 6: Configuring the GTS

The GTS is configured through a single configuration file which is located at
GTS_LOCATION/etc/gts-conf.xml (shown below). The GTS uses a MySQL
Database as its backend data store; you must provide the GTS with the connection
details for your MySQL database. The database element in the GTS configuration is
used to specify the connection information for your MySQL database. In the majority
of cases you only need to specify the hostname of your database server, the port
that the server runs on, and the username and password of a database user. When
the GTS is first initialized it creates a database, named with the value of the gts-
internal-id element. The GTS also proceeds to setup its database schema in the
database it created. In order to do so the GTS must be configured with a database
user that has the appropriate permissions. If you do not wish to provide the GTS
with such a user you may create the database manually and provide the GTS with a
user who has the permission to modify the database schema. In this scenario the
GTS will not create the database but will proceed to setup its database schema in
the database that was manually created.

<gts>

 <resource name="GTSConfiguration"

class="gov.nih.nci.cagrid.gts.service.GTSConfiguration">

 <gts-config>

 <gts-internal-id>GTS</gts-internal-id>

 <sync-authorities hours="0" minutes="2" seconds="0"/>

 <database>

 <name/>

 <driver>com.mysql.jdbc.Driver</driver>

 <urlPrefix>jdbc:mysql:</urlPrefix>

 <host>localhost</host>

 <port>3306</port>

 <username>root</username>

 <password></password>

 <pool>1</pool>

 </database>

 </gts-config>

 </resource>

</gts>

Step 7: Set Initial Administrators

Many of the operations provided by the GTS provide a means of administrating the
trust fabric and are therefore restricted to GTS administrators. GTS Administrators
are “super users” and can perform any operation on a GTS (i.e., manage certificate
authorities, manage trust levels, manage permissions, etc). In order to bootstrap the
GTS such that it may be administered through its service interface the GTS must be
provided with at least one initial administrator. The GTS provides a command line
program for adding initial administrators. To leverage this program, type the
following from a command prompt:

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:ConfigureTomcat

 caGrid Security

 85

%> cd GTS_LOCATION

%> ant addAmin

This prompts for the grid identity of the initial administrator to add. Enter the grid
identity of the user you want to add as an initial administrator as shown below:

%> cd GTS_LOCATION

%> ant addAmin

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\ext\ws-core-4.0.3

addAdmin:

 [input] Please enter the grid identity for the admin you wish to add:

/C=US/O=OSU/OU=BMI/OU=caGrid Development/OU=Users/OU=Dorian IdP/CN=jdoe

 [java] The user /C=US/O=OSU/OU=BMI/OU=caGrid

Development/OU=Users/OU=Dorian

 IdP/CN=jdoe was succesfully added as an administrator of the GTS (GTS)

BUILD SUCCESSFUL

Total time: 48 seconds

Step 8: Deploying the GTS

Once you have configured a secure container (Globus or Tomcat) you need to
deploy the GTS to that container. To deploy the GTS to a secure Globus container
type the following from a command prompt:

%> cd GTS_LOCATION

%> ant deployGlobus

To deploy the GTS to a secure Tomcat container type the following from a
command prompt:

%> cd GTS_LOCATION

%> ant deployTomcat

Regardless of which container is selected, a significant amount of output displays on
the screen. If the deployment is successful, "BUILD SUCCESSFUL" displays on the
screen.

Step 9: Verifying the Installation

Once GTS is deployed, the installation and configuration of GTS is complete. Before
verifying that the installation was successful, start the GTS service by starting the
container that the GTS was deployed to. For directions on starting a secure Globus
container consult the following web site:
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-
To:SecureGlobusContainer

To start a secure Tomcat container run the startup script (startup.sh or

startup.bat) located in TOMCAT_INSTALLATION_DIRECTORY/bin. If the container starts
up, verify that the GTS installation was successful by typing the following from the
command prompt:

%> cd GTS_LOCATION

%> ant ui

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer

caGrid 1.2 User’s Guide

 86

After the GTS Administration UI opens, use the following steps:

1. Click Certificate Authorities to open the Certificate Authorities window.

2. From the Service drop down menu, select
https://localhost:8443/wsrf/services/cagrid/GTS

3. Click Find Trusted Authorities.

The UI connects to the GTS and gets a list of all the trusted certificate
authorities managed by that GTS. Since this is a new installation this should
return 0 certificate authorities and should be reflected in the status message
displayed in the progress bar below the Find Trusted Authorities button.
Upon successfully connecting to the GTS, the value of the status message in
the progress bar should update to Completed [Found 0 Trusted Authority(s)]
as illustrated in Figure 5-21. The Grid Trust Service (GTS) has been
successfully installed and configured.

Figure 5-21 Certificate Authorities window

GTS Administration

Managing Trust Fabric Administrators

Many of the operations provided by the GTS provide a means of administrating the
trust fabric and are therefore restricted to GTS administrators or to administrators of
individual certificate authorities. The GTS allows for the assignment of two types of
permissions: GTS Administrators and Trusted CA Administrators. GTS
Administrators are “super users” and can perform any operation on a GTS (i.e.,
manage certificate authorities, manage trust levels, manage permissions, etc).
Trusted CA Administrator permission corresponds to a specific CA giving a user

https://localhost:8443/wsrf/services/cagrid/GTS

 caGrid Security

 87

with this permission the ability to update the CRL for the corresponding CA. The
GAARDS UI enables the remote management of GTS administrators. To manage
administrators with the GAARDS UI, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Permissions to open the Permissions window.

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click List Permissions.

The permissions granting administrative access to the selected GTS are
listed. Figure 5-22 lists three permissions. The first two give the entity with
the grid identity listed super user rights to the GTS. The third permission
gives the entity with the grid identity rights to administrate the Trusted
Certificate Authority listed, mainly the ability to update the Certificate
Revocation List (CRL).

Figure 5-22 GTS Access Management window

Adding a GTS Administrator

Administrators or permissions can be added by using the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Permissions to open the Permissions window.

caGrid 1.2 User’s Guide

 88

4. Click Add Permission to launch the Add Permission window (Figure 5-23).

5. Select the URI of the GTS in which you want to add an administrator.

6. In the Grid Identity text box, enter the grid identity of the user being added
as an administrator.

7. From the Trusted Authority drop down menu, select the trusted certificate
authority in which this permission will apply. Selecting “*” or all trusted
authorities makes the permission apply to all trusted certificate authorities,
giving the entity specified super user right to the GTS. Selecting a specific
Trusted Certificate Authority gives the grid identity specified the right to
update the CRL for the certificate authority selected.

8. Click Add Permission to add/apply the permission to the GTS.

Figure 5-23 Add Permission window

Removing a GTS Administrator

To remove an administrator, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Permissions to open the Permissions window.

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click List Permissions.

6. Select the permission to remove.

7. Click Remove Permission.

Managing Levels of Assurance

A level of assurance or trust level specifies the level of confidence with which a
given certificate authority is trusted in the grid in which it is deployed. The trust level
concept in the grid is similar to obtaining an identification card, for example

 caGrid Security

 89

obtaining a passport requires extensive documentation and a thorough background
check where as obtaining a library card requires much less. In the grid, one can
assume that certificate authorities are trusted with different levels of confidence.
There are multiple types and instances of certificate authorities. Some authorities
may be used to assert identities; other authorities may be used to assert digitally
signed documents. Even certificate authorities asserting the same thing may have
differing levels of trust associated with them, as they may employ different policies
for issuing and validating identities. For example, a certificate authority may require
that anyone applying for a certificate present official documentation about their real
identity. The CA issues a certificate to the applicant after these documents are
reviewed by the CA staff. Another certificate authority may automatically issue
certificates based on an online application submitted by the applicant; the applicant
may have been requested to log on to the system using a user id and password. In
these cases, the first certificate authority has a stricter policy for issuing certificates;
thus, it is reasonable to expect that the first certificate authority should be trusted
more than the second certificate authority

The GAARDS UI enables the remote management of trust levels by using the
following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric >Levels of Assurance to open the Levels of Assurance
window (Figure 5-24).

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click List Trust Levels.

All the trust levels or levels of assurance registered with the selected GTS
are listed. This UI also allows GTS administrators to add, remove, and
update trust levels.

caGrid 1.2 User’s Guide

 90

Figure 5-24 GTS Trust Level Management

Viewing and Modifying Levels of Assurance

To view or modify a trust level, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Levels of Assurance to open the Levels of
Assurance window (Figure 5-25).

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click List Trust Levels.

6. Select the trust level in which you wish to view or modify.

7. Click View/Modify Trust Level to open the View/Modify window for the trust
level you selected.

The View/Modify window lists the name of the trust level, whether or not the
selected GTS is the authority for the trust level, the authority GTS, the
source GTS, when the trust level was last updated, and a description of the
trust level. Since the trust fabric can be federated, a GTS can inherit trust
levels from other GTSs. The GTS in which a trust level originates is
considered the authority GTS. The Is Authority listing in Figure 5-25 specifies
whether the selected GTS is the authority for the trust level. The Authority
GTS listing specifies the URL of the authority GTS or the GTS in which the
trust level originated. The Source GTS listing specifies the URL of the GTS

 caGrid Security

 91

in which the selected GTS discovered or obtained the trust level from. The
Description listing in the figure specifies a human readable description of the
trust level. The Description is the only field of a trust level that the GTS
allows an administrator to modify. To modify the Description, simply make
the desired changes and click Update Trust Level.

Figure 5-25 View/Modify Trust Level window

Adding a Level of Assurance

To add a new trust level to a GTS, use the following steps.

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Levels of Assurance to open the Levels of
Assurance window.

4. Click Add Trust Level to open the Add Trust Level window (Figure 5-26).

5. From the Service drop down menu, select the URI of the GTS you wish to
administer.

6. Specify the name and description of the trust level.

7. Click Add Trust Level to submit the new trust level to the GTS.

caGrid 1.2 User’s Guide

 92

Figure 5-26 Add Trust Level window

Removing a Level of Assurance

To remove a trust level, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Levels of Assurance to open the Levels of
Assurance window.

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click List Trust Levels.

6. Select the trust level to remove.

7. Click Remove Trust Level.

Managing Certificate Authorities

The ultimate goal of the GTS is to provide a framework for provisioning trusted
certificate authorities to both clients and services in the grid such that they may
confidently know which certificate authorities to trust when deciding whether to
accept credentials, assertions, and other digitally signed documents. Thus
management of certificate authorities within the GTS or trust fabric is critical. The
GAARDS UI facilitates the management of certificate authorities within the trust
fabric. Certificate Authorities are managed through the Trusted Certificate Authority
Management Window. Although you may browse trusted certificate authorities
without being a GTS administrator, you must be a GTS administrator to manage the
trusted certificate authorities. Thus depending on what you are planning to do you
may be required to provide the grid credentials of a GTS administrator.

 caGrid Security

 93

To manage certificate authorities with the GAARDS UI use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. Select Trust Fabric > Certificate Authorities to open the Certificate
Authorities window (Figure 5-27).

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click Find Certificate Authorities.

Once the search is complete, the Trusted Certificate Authorities meeting
your search criteria is listed in the table below the progress bar. The
certificate authorities are listed by name and by the subject distinguished
name (DN) in the CA certificate.

Figure 5-27 Trusted Certificate Authority Management window

Adding a Trusted Certificate Authority

To add or register a certificate authority, the GTS requires the specification of the
CA’s root certificate, a set of trust levels, a status, and an optional CRL. The CA’s
root certificate is required for validating certificates. The set of trust levels specifies
the level of trust associated with the CA. The status specifies the current state of the
certificate authority and can be set to “trusted” or “suspended”. Setting the status of
a certificate authority allows it to be temporarily added and removed from the trust
fabric. For instance, if the security of a CA has been compromised, its status can be
set to “suspended” to quickly invalidate all certificates issued and signed by the CA.
For each trusted certificate authority, the GTS maintains a Certificate Revocation
List (CRL). The CRL contains a list of certificates that have been revoked by the CA.
To add a CA to the GTS, use the following steps:

caGrid 1.2 User’s Guide

 94

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. Select Certificate Authorities to open the Certificate Authorities window.

4. Click Add Trusted Authority to open the Add Trusted Authority window
(Figure 5-28).

5. From the Service drop down menu, select the URI of the GTS you wish to
add a CA to.

6. Click Import Certificate which prompts for the location of the CA certificate.

7. Browse to the location of the CA certificate (PEM format), select it, and click
Open to load it.

8. In the Trust Levels tab, select all the trust levels that apply to the certificate
authority being added.

9. Optionally, if the CA has a CRL, you may import it. Just as the CA certificate,
the CRL must be in PEM format. To import the CA’s CRL, click Import CRL.

10. Click Add Trusted Authority.

Figure 5-28 Add Trusted Authority window

Viewing/Modifying Trusted Certificate Authorities

To view or modify a Trusted Certificate Authority, use the following steps.

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. Select Trust Fabric > Certificate Authorities to open the Certificate
Authorities window.

 caGrid Security

 95

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click Find Certificate Authorities.

6. Select the certificate authority to view/modify and click View/Modify Trusted
Authority to open the View/Modify Trusted Authority window (Figure 5-29).

The View/Modify Trusted Authority window contains four tabs: Properties,
Trust Levels, Certificate, and Certificate Revocation List (CRL). The
Properties tab contains various metadata about the certificate authority
including the Trusted Authority Name, Status, Is Authority, Authority GTS,
Source GTS, Expires, and Last Updated. The Trusted Authority Name field
specifies the subject distinguished name (DN) in the CA’s certificate. The
Status field specifies the current state of the certificate authority; the status
can be set to Trusted or Suspended. Setting the status of a certificate
authority allows it to be temporarily added and removed from the trust fabric.
For instance, if the security of a CA has been compromised, its status can be
set to Suspended to quickly invalidate all certificates issued and signed by
the CA. The Status field can be modified. The remaining fields in the
Properties tab correspond to the federated nature of the GTS. The Is
Authority field specifies whether or not the GTS is the authority for the
certificate authority. The Authority GTS field specifies the URI of the
authority GTS for the certificate authority. The Source GTS listing specifies
the URI of the GTS from which the GTS discovered or obtained the
certificate authority. The Expires field specifies when the certificate authority
listing within the GTS expires, a certificate authority can expire if it was
discovered from another GTS and communication with the other GTS is lost.
If the GTS is the authority for the certificate authority, it never expires. The
Last Updated field specifies the last time the certificate authority listing was
updated.

The Trust Levels tab contains a listing of all the trust levels supported by the
GTS. The trust levels, in which the certificate authority is assigned, are
selected in the listing. The trust levels for the certificate authority can be
modified by selecting and deselecting specific trust levels.

The Certificate tab presents a graphical view of the certificate authority’s
certificate and cannot be modified. The CRL represented in the Certificate
Revocation List tab can be modified by clicking the Import CRL button,
which prompts to specify the location of the CRL on the file system. Note
that the CRL must be in PEM format.

7. To update a certificate authority, specify the desired changes and click
Update Trusted Authority.

caGrid 1.2 User’s Guide

 96

Figure 5-29 Show/Modify Trusted Authority window

Removing Trusted Certificate Authorities

To remove a Trusted Certificate Authority, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. Select Trust Fabric > Certificate Authorities to open the Certificate
Authorities window.

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click Find Certificate Authorities.

6. Select the certificate authority to remove.

7. Click Remove Trusted Authority.

Managing a Federated Grid Trust Fabric

Redundancy and scalability are critical properties of a federated trust fabric. Serious
performance implications will occur if all entities in the grid are not discovering and
performing validation against a trust fabric maintained in a central GTS. In order to
enable a federated trust fabric, each GTS can be administered to synchronize with a
set of authoritative GTSs. A GTS can inherit both trust levels and trusted certificate
authorities from its authority GTSs. Registering an authority GTS requires the
specification of the following properties:

 a service’s uniform resource identifier (URI)

 priority

 caGrid Security

 97

 whether or not to synchronize the trust levels

 time to live

 whether or not to perform authorization

 the authority service’s identity

The priority property is used for resolving conflicts between authority GTSs. For
example, if two authority GTSs have a listing for the same certificate authority, the
authority GTS with the highest priority is used for obtaining that certificate authority
and its corresponding information (e.g. it’s CRL). If contact to an authoritative GTS
is lost for a significant amount of time, the trust fabric within the subordinate GTS
may become significantly out of date, which could be a potential security risk. The
time to live property specifies how long certificate authorities obtained from
authoritative GTSs are valid in the subordinate GTS. The time to live on a given
certificate authority record is reset after each synchronization with the authority
GTS. If contact with an authority GTS is lost, the time to live expires and the
certificate authority is removed from the subordinate’s trust fabric.

Figure 5-30 Deployment of multiple GTSs

Figure 5-30 illustrates an example of how multiple GTSs can be deployed to create
and manage a federated trust fabric. In the example there are five GTSs: caGrid
GTS, TeraGrid GTS, OSU GTS, caGrid/TeraGrid GTS, and UT GTS.

 The caGrid GTS has no authority GTSs; it manages the certificate
authorities A and S.

 The TeraGrid GTS has no authority GTSs; it manages the certificate
authorities X and S.

 The OSU GTS has one authority GTS, the caGrid GTS. The OSU GTS
inherits the certificate authorities A and S from its authority, the caGrid GTS.
The OSU GTS manages an additional certificate authority B. The OSU GTS

caGrid 1.2 User’s Guide

 98

is an example of how the global trust fabric can be extended to include local
trusted certificate authorities, in this case, and the additional certificate
authority CA B, which is trusted by OSU.

 The caGrid/TeraGrid GTS has two authority GTSs: the caGrid GTS and the
TeraGrid GTS. The TeraGrid GTS inherits CA A from the caGrid GTS and
CA X from the TeraGrid GTS. Since the caGrid GTS has a higher priority
then the TeraGrid GTS, it inherits CA S from the caGrid GTS. The
caGrid/TeraGrid GTS is an example of how two existing trust fabrics from
two different Grids can be joined together.

 Finally, the UT GTS has one authority GTS, the TeraGrid GTS. The UT GTS
inherits CA X and CA S from the TeraGrid GTS. The UT GTS is an example
of standing up a GTS for better redundancy and scalability.

The GAARDS UI facilitates the management of a federated trust fabric through the
administration of Authority GTSs. A GTS with an Authority GTS inherits its trust
levels and trusted certificate authorities. To manage AuthorityGTS(s) with the
GAARDS UI, use the following steps:

1. Launch the GAARDS UI.

2. Log on to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Trust Federation to open the Trust Federation
window (Figure 5-31).

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click Find Authorities.

All the Authority GTSs are listed in the table below the progress bar. Each
Authority GTS is listed with its service URL and its priority; the priority
dictates how conflicts are resolved between authorities. For example, if a
GTS has two authorities that manage the same certificate authority, the GTS
inherits the certificate authority from the Authority GTS with the higher
priority (lowest number).

 caGrid Security

 99

Figure 5-31 GTS Authority Management window

Prioritizing Authorities

To prioritize the Authority GTSs, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Trust Federation to open the Trust Federation
window.

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click Find Authorities.

6. Select the desired Authority GTS to change the priority of.

7. Click Increase Priority to increase the priority of the selected Authority GTS
or click Decrease Priority to decrease the priority of the selected Authority
GTS. (The Authority GTS with the lowest number has the highest priority).

8. Once the priorities of the Authorities GTSs are organized properly, click
Update Priorities to commit the priorities to the GTS.

Adding an Authority GTS

To add an Authority GTS, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

caGrid 1.2 User’s Guide

 100

3. Select Trust Fabric > Trust Federation to open the Trust Federation
window.

4. Click Add Authority to open the Add Authority window (Figure 5-32).

5. From the Grid Trust Service (GTS) drop down menu, specify the URI of the
GTS you wish to add an authority to.

6. In the GTS URI text field enter the URI of the GTS being added as an
authority.

7. From the Priority drop down menu, specify the priority of this authority with
respect to other Authority GTSs.

8. From the Synchronize Trust Levels drop down menu, specify whether or
not the GTS should synchronize or inherit the trust levels from its Authority
GTS.

9. From the Perform Authorization drop down menu, specify whether or not
the GTS should perform authorization on the Authority GTS. If performing
authorization is chosen, the expected grid identity of the Authority GTS must
be entered in the Authorization Identity text field.

10. Finally, specify a time to live for trusted authorities inherited from the
authority GTS. For example, if the time to live specified is an hour, certificate
authorities inherited are removed from the local GTS trust fabric after an
hour if contact to the authority GTS is lost.

11. Click Add Authority.

Figure 5-32 Add Authority window

Updating an Authority GTS

To update an Authority GTS, use the following steps:

1. Launch the GAARDS UI.

 caGrid Security

 101

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric > Trust Federation to open the Trust Federation
window.

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click Find Authorities.

6. Select the authority you wish to view/update.

7. Click Update Authority to open the Update Authority window (Figure 5-33).

You may update whether or not the GTS should synchronize or inherit the
trust levels from its Authority GTS. You may also update the authorization
constraints for the Authority GTS as well as the time to live for trusted
certificate authorities obtained from the authority GTS. You may not update
the Authority GTS URI or priority.

Figure 5-33 View/Modify Authority window

Removing an Authority GTS

To remove an Authority GTS, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a GTS
Administrator).

3. Select Trust Fabric >Trust Federation to open the Trust Federation
window.

4. From the Service drop down menu, select the URI of the GTS you wish to
administer.

5. Click Find Authorities.

6. Select the authority you wish to remove.

caGrid 1.2 User’s Guide

 102

7. Click Remove Authority.

Syncing with the Trust Fabric
The Globus Toolkit facilitates the authentication of clients against a list of trusted
certificate authorities. This consists of validating the client’s certificate to ensure that
it was issued and signed by a trusted certificate authority. The Grid Trust Service
(GTS) maintains the trusted certificate authorities or trust fabric for caGrid. In order
for Globus to authenticate users against the trust fabric, both client and server
caGrid installations must be synced with the trust fabric. The SyncGTS tool provides
three methods for syncing with the trust fabric:

 Command Line Approach

 Service Based Approach

 Programmatic Approach

The command line approach is generally recommended for clients wishing to sync
with the trust fabric. The Service Based Approach is recommended for syncing
servers with the trust fabric. The programmatic approach is intended for applications
who wish to sync with trust fabric on behalf of the clients who use them, removing
this responsibility from the client.

SyncGTS Command Line Approach

This guide provides a step by step process for syncing with the trust fabric using the
SyncGTS Command Line Approach. The SyncGTS command line approach is
intended to be used to sync client environments with the trust fabric. To ensure that
the client environment is synced with the latest trust roots, this approach should be
repeated regularly.

SyncGTS is distributed as a standalone project as well as part of other projects such
as caGrid. Each of the distributions contains a syncgts directory herein referred to
as SYNC_GTS_LOCATION. To sync with the trust fabric using the command line
approach use the following steps:

Step 1: Building SyncGTS

If you have obtained a source release of the SyncGTS you will need to build the
SyncGTS. To build the SyncGTS type the following from a command prompt:

%> cd SYNC_GTS_LOCATION

%> ant clean all

Note: Depending on the SyncGTS distribution it may be required to build the entire

project that SyncGTS is distributed with prior to building SyncGTS. For example, if

you have obtained a caGrid source distribution this is required. If you received a

SyncGTS standalone distribution this is not required.

Step 2: Configuring SyncGTS (Optional)

SyncGTS is configured through an XML configuration file herein referred to as the
Sync Description. The default Sync Description file can be found in
SYNC_GTS_LOCATION/ext/resource/sync-description.xml. For most distributions,
SyncGTS is pre-configured to work with the grid in which it is being distributed.

 caGrid Security

 103

Therefore no further configuration is required. If you do need to make configuration
changes to SyncGTS, in most cases you will only need to edit the gtsServiceURI,
GTSIdentity, and ExcludedCAs elements. For more details on the SyncGTS
configuration file please consult the following website:

http://www.cagrid.org/mwiki/index.php?title=GTS:1.2:Administrators_Guide:SyncGTS:Confi
guration

Step 3: Installing GTS Trust Roots (Optional)

In order for SyncGTS to sync with a GTS service, it is required that the local
environment trust the GTS service it is synced with. In other words the local
environment must trust the certificate authority that issued the GTS Service's
credentials. Most distributions of SyncGTS are pre-configured to trust the GTS
credentialing certificate authority for the grid in which the distribution is configured. If
this is the case no further configuration is required. If this is not the case SyncGTS
can easily be configured to trust other certificate authorities by placing a copy of the
CA's certificate in the directory: SYNC_GTS_LOCATION/ext/resources/certificates.
The CA certificate must be contained in PEM format and must be given a digit (0-9)
extension. For example, to configure SyncGTS to trust a CA whose certificate is
contained in the file cacert.pem, the file should be renamed to cacert.0 and copied
to the directory: SYNC_GTS_LOCATION/ext/resources/certificates. In most cases
you will also to add an entry to the excluded CA list in SyncGTS's configuration file.
For more details on the SyncGTS configuration file please consult the following
website:

http://www.cagrid.org/mwiki/index.php?title=GTS:1.2:Administrators_Guide:SyncGT
S:Configuration

Step 4: Running SyncGTS

To run SyncGTS from the command line, type the following from a command
prompt:

%> cd SYNC_GTS_LOCATION

%> ant syncWithTrustFabric

SyncGTS Server Side Approach

This guide provides a step by step process for syncing with the trust fabric using the
SyncGTS Server Side Approach. The SyncGTS server side approach is intended to
be used to sync server environments or environments running grid services with the
trust fabric. In this approach SyncGTS is deployed to a service container ensuring
that the server environment is automatically updated to be in sync with the most up
to date trust fabric.

SyncGTS is distributed as a standalone project as well as part of other projects such
as caGrid. Each of the distributions contains a syncgts directory herein referred to
as SYNC_GTS_LOCATION. To sync with the trust fabric using the server side
approach, use the following steps:

Step 1: Building SyncGTS

If you have obtained a source release of the SyncGTS you will need to build the
SyncGTS. To build the SyncGTS type the following from a command prompt:

http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration
http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration
http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration
http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration

caGrid 1.2 User’s Guide

 104

%> cd SYNC_GTS_LOCATION

%> ant clean all

Note: Depending on the SyncGTS distribution it may be required to build the entire

project that SyncGTS is distributed with prior to building SyncGTS. For example if

you have obtained a caGrid source distribution this is required. If you received a

SyncGTS standalone distribution this is not required.

Step 2: Configuring SyncGTS (Optional)

SyncGTS is configured through an XML configuration file herein referred to as the
Sync Description. The default Sync Description file can be found
inSYNC_GTS_LOCATION/ext/resource/sync-description.xml. For most
distributions, SyncGTS is pre-configured to work with the grid in which it is being
distributed. Therefore no further configuration is required. If you do need to make
configuration changes to SyncGTS, in most cases you will only need to edit the
gtsServiceURI, GTSIdentity, and ExcludedCAs elements. For more details on the
SyncGTS configuration file please consult the following website:

http://www.cagrid.org/mwiki/index.php?title=GTS:1.2:Administrators_Guide:SyncGT
S:Configuration

Step 3: Installing GTS Trust Roots (Optional)

In order for SyncGTS to sync with a GTS service, it is required that the local
environment trust the GTS service being synced with. In other words the local
environment must trust the certificate authority that issued the GTS Service's
credentials. Most distributions of SyncGTS are pre-configured to trust the GTS
credentialing certificate authority for the grid in which the distribution is configured. If
this is the case no further configuration is required. If this is not the case SyncGTS
can easily be configured to trust other certificate authorities by placing a copy of the
CA's certificate in the directory: SYNC_GTS_LOCATION/ext/resources/certificates.
The CA certificate must be contained in PEM format and must be given a digit (0-9)
extension. For example, to configure SyncGTS to trust a CA whose certificate is
contained in the file cacert.pem, the file should be renamed to cacert.0 and copied
to the directory: SYNC_GTS_LOCATION/ext/resources/certificates. In most cases
you will also want to add an entry to the excluded CA list in SyncGTS's configuration
file. For more details on the SyncGTS configuration file please consult the following
website:

http://www.cagrid.org/mwiki/index.php?title=GTS:1.2:Administrators_Guide:SyncGT
S:Configuration

Step 4: Deploying SyncGTS

Once you have configured a container (Globus or Tomcat) you need to deploy
SyncGTS to that container. To deploy SyncGTS to a Globus container type the
following from a command prompt:

%> cd SYNC_GTS_LOCATION

%> ant deployGlobus

To deploy SyncGTS to a secure Tomcat container type the following from a
command prompt:

%> cd SYNC_GTS_LOCATION

http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration
http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration
http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration
http://www.cagrid.org/mwiki/index.php?title=GTS:1.1:Administrators_Guide:SyncGTS:Configuration

 caGrid Security

 105

%> ant deployGlobus

Regardless of which container you select, a significant amount of output is displayed
to the screen. If the deployment is successful, "BUILD SUCCESSFUL" appears on
the screen.

Grid Grouper
Grid Grouper provides a group based authorization solution for the grid, where grid
services and applications enforce authorization policy based on membership to
groups defined and managed at the grid level. Grid Grouper is built on top of
Grouper, an internet initiative focused on providing tools for group management.
Grouper is a java object model that currently supports: basic group management by
distributed authorities; subgroups; composite groups (whose membership is
determined by the union, intersection, or relative complement of two other groups);
custom group types and custom attributes; trace back of indirect membership; and
delegation. Applications interact with Grouper by embedding the Grouper’s java
object model within applications. Grouper does not provide a service interface for
accessing groups. For more information on Grouper, refer to the following URL:

https://wiki.internet2.edu/confluence/display/GrouperWG/Home

Grid Grouper (Figure 5-34) is a grid enabled version of Grouper, providing a web
service interface to the Grouper object model. Grid Grouper makes groups
managed by Grouper available and manageable to applications and other services
in the grid. Grid Grouper provides an almost identical object model to the Grouper
object model on the grid client side. Applications and services can use the Grid
Grouper object model much like they would use the Grouper object model to access
and manage groups as well as enforce authorization policy based on membership to
groups.

https://wiki.internet2.edu/confluence/display/GrouperWG/Home

caGrid 1.2 User’s Guide

 106

Figure 5-34 Grid Grouper Architecture

In Grouper/Grid Grouper, groups are organized into namespaces called stems.
Each stem can have a set of child stems and a set of child groups with exception to
the root stem, which cannot have any child groups. For example, consider a
university that is comprised of many departments each of which has Faculty, Staff,
and Students. In terms of organizing the university in Grid Grouper, a stem could be
created for each department and each department stem would contain three groups;
one each for Faculty, Staff, and Students.

Installation and Configuration
Grid Grouper is distributed as a standalone project as well as part of other projects
such as caGrid. Each of the distributions contains a gridgrouper directory herein
referred to as GRID_GROUPER_LOCATION. To install and configure Grid Grouper,
use the following steps.

Step 1: Install Prerequisite Software

In order to install and run Grid Grouper, it is required that the prerequisite software
in Table 5-3 is installed.

 caGrid Security

 107

Software Version Description
Java SDK

jsdk1.5 or higher Grid Grouper is written in Java
therefore it requires the Java SDK.
After installing you will have to set up
an environmental variable pointing to
the Java SDK directory and name it
JAVA_HOME.

MySQL Mysql 4.1.x or higher For persisting the trust fabric and
other information.

Ant Ant 1.6.5 GridGrouper along with the Globus
Toolkit in which GridGrouper is built
on, uses Jakarta Ant for building and
deploying.

Globus Globus 4.0.3 GridGrouper is built on top of the
Globus Toolkit. GridGrouper requires
the ws-core installation of the Globus
Toolkit.

Tomcat

(Only required if
deploying to Tomcat)

Tomcat 5.0.28 GridGrouper can be optionally
deployed as a Grid Service to a
Tomcat deployed Globus Toolkit.

Table 5-3 Grid Grouper software prerequisites

Step 2: Building Grid Grouper

If you have obtained a source release of Grid Grouper you will need to build Grid
Grouper. To build Grid Grouper type the following from a command prompt:

%> cd GRID_GROUPER_LOCATION

%> ant clean all

Note: Depending on the Grid Grouper distribution it may be required to build the entire

project that Grid Grouper is distributed with prior to building Grid Grouper. For

example if you have obtained a caGrid source distribution this is required. If you

received a Grid Grouper standalone distribution this is not required.

Step 3: Obtain a Host Credential

Grid Grouper requires that it runs as a secure service. In order to run a secure
service, the container hosting the service must run with a host credential. A host
credential consists of a X.509 certificate and a private key. One of the features
Dorian provides is the ability to issue and manage host credentials. There are many
methods of retrieving host credentials, these methods include but are not limited to
the following:

 Requesting a credential from a known/trusted certificate authority (caGrid
Certificate Authority).

 Standing up a Dorian service.

 Standing up a simple certificate authority.

For production environments it is recommended that you obtain a host credential
from a trusted certificate authority (option 1), such as a caGrid Certificate Authority.

caGrid 1.2 User’s Guide

 108

Standing up a Dorian (option 2) is another solid option especially if you wish to run
your own production Certificate Authority. Standing up a simple certificate authority
(option 3) is not recommended for production environments but is an excellent
option for quickly obtaining a host credential for testing purposes.

If you have a host credential already or you have a method of obtaining (option 1 or
option 2) one please proceed to the next step; otherwise for the purposes of this
guide certificate authority (option 3) will be created and used to issue a host
credential. To create a certificate authority, use the following steps from a command
prompt (illustrated below):

cd GRID_GROUPER_LOCATION

Type ant generateCA

1. Enter the distinguished name (DN) for the CA (i.e O=xyz,OU=abc,CN=My
CA).

2. Enter the number of days that the CA will be valid for (i.e 3650)

3. Enter a password which will be used to encrypt the CA's private key.

4. Enter a file to write the CA private key to.

5. Enter a file to write the CA certificate to.

%> cd GRID_GROUPER_LOCATION

%> ant generateCA

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\ext\ws-core-4.0.3

generateCA:

 [input] Please enter the DN for the new CA (ex. O=xyz,OU=abc,CN=My CA):

O=xyz,OU=abc,CN=My CA

 [input] Please enter the number of days the new CA will be valid for:

3650

 [input] Please enter a password for the new CA:

password

 [input] Please enter a location to write the new CA's private key:

cakey.pem

 [input] Please enter a location to write the new CA's certificate:

cacert.pem

 [java] Successfully create the CA certificate:

 [java] O=xyz,OU=abc,CN=My CA

 [java] CA Certificate Valid Till:

 [java] Fri Jun 23 12:47:10 EDT 2017

 [java] CA Private Key Written to:

 [java] cakey.pem

 [java] CA Certificate Written to:

 [java] cacert.pem

BUILD SUCCESSFUL

Total time: 46 seconds

 caGrid Security

 109

6. Once a certificate authority is created, use it to issue a host credentials. To
create host credentials, use the following steps from a command prompt
(below):

cd GRID_GROUPER_LOCATION

7. Type ant createAndSignHostCertificate.

8. Enter the location of the CA's private key.

9. Enter the password used to encrypt the CA's private key.

10. Enter the location of the CA's certificate.

11. Enter the name of the host.

12. Enter the number of days that the host credentials should be valid for.

13. Enter a location to write the host private key.

14. Enter a location to write the host certificate.

%> cd GRID_GROUPER_LOCATION

%> ant createAndSignHostCertificate

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\ext\ws-core-4.0.3

createAndSignHostCertificate:

 [input] Please enter the location of the CA's private key:

cakey.pem

 [input] Please enter the CA's password:

password

 [input] Please enter the location of the CA's certificate:

cacert.pem

 [input] Please enter the Hostname [${env.HOST}]:

myhost

 [input] Please enter the number of days the host certificate will be

valid f

or:

365

 [input] Please enter a location to write the host key:

hostkey.pem

 [input] Please enter a location to write the host certificate:

hostcert.pem

 [java] Successfully create the user certificate:

 [java] O=xyz,OU=abc,CN=host/myhost

 [java] User certificate issued by:

 [java] O=xyz,OU=abc,CN=My CA

 [java] User Certificate Valid Till:

 [java] Wed Jun 25 13:58:37 EDT 2008

 [java] User Private Key Written to:

 [java] hostkey.pem

 [java] User Certificate Written to:

 [java] hostcert.pem

BUILD SUCCESSFUL

Total time: 52 seconds

caGrid 1.2 User’s Guide

 110

Step 4: Configure Globus To Trust Grid Grouper

In order to securely invoke Grid Grouper, configure Globus to trust the CA that
issued the host credentials obtained in the previous step. Place a copy of the
certificate for the CA that issued the host credentials in the Globus trusted
certificates directory. Unless otherwise specified during installation, the Globus
trusted certificate directory is usually USER_HOME/.globus/certificates. Globus
requires all CA certificates in its trusted certificates directory to be in PEM format
and to have a digit extension (0-9). For example, if a CA certificate is stored in the
file cacert.pem in PEM format than in order to configure Globus to trust this
certificate authority it should be copied in to the directory
USER_HOME/.globus/certificates (create directory if needed) with the file name
cacert.0

Step 5: Configuring a Secure Container

Once host credentials are obtained, use them to configure a secure container. Grid
Grouper can be run from a secure Globus container or a secure Tomcat container.
For directions on how to configure a secure Globus container please consult the
following website:

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-
To:SecureGlobusContainer

For directions on how to configure a secure Tomcat container please consult the
following website:

http://www.cagrid.org/mwiki/index.php?title=CaGrid:ConfigureTomcat

Step 6: Configuring Grid Grouper

To configure GridGouper, specify your MySQL database information in the
grouper.hibernate.properties configuration file located in
GRID_GROUPER_LOCATION/resources/conf/. The properties you need to edit are
highlighted in bold in below, mainly the database connection URL, database
username, and database password.

#MySQL

hibernate.dialect

=net.sf.hibernate.dialect.MySQLDialect

hibernate.connection.driver_class = com.mysql.jdbc.Driver

hibernate.connection.url = jdbc:mysql://localhost:3306/grouper

hibernate.connection.username = root

hibernate.connection.password = YOUR_PASSWORD

Once you have edited the Grid Grouper configuration file, initialize the Grid Grouper
database by manually creating the grouper database in MySQL. Name the database
as configured in the hibernate.connection.url property of the

grouper.hibernate.properties configuration file. Once the database is created,

enter ant grouperInit to build out and initialize the Grouper/Grid Grouper
database.

Step 7: Adding Initial Grid Grouper Administrator(s)

In order to administrate Grid Grouper, Grid Grouper must be initially provided with at
least one administrator. Grid Grouper provides a command line tool for

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:ConfigureTomcat

 caGrid Security

 111

bootstrapping it and initially adding administrator(s). To leverage this command line
utility type the following from a command prompt:

%> cd GRID_GROUPER_LOCATION

%> ant addAmin

Step 8: Deploying Grid Grouper

Once you have configured a secure container (Globus or Tomcat), deploy Grid
Grouper to that container by typing the following from a command prompt:

%> cd GRID_GROUPER_LOCATION

%> ant deployGlobus

To deploy Grid Grouper to a secure Tomcat container type the following from a
command prompt:

%> cd GRID_GROUPER_LOCATION

%> ant deployTomcat

Regardless of which container you select, a significant amount of output is
displayed. If the deployment is successful, "BUILD SUCCESSFUL" is displayed on
the screen.

Step 9: Verifying the Installation

Once you have deployed Grid Grouper, the installation and configuration of Grid
Grouper is complete. Before verifying that the installation was successful, start the
Grid Grouper service by starting the container that Grid Grouper was deployed to.
For directions on starting a secure Globus container please consult the following
web site:

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-
To:SecureGlobusContainer

To start a secure Tomcat container run the startup script (startup.sh or

startup.bat) located in TOMCAT_INSTALLATION_DIRECTORY/bin. If the
container starts, verify that the Grid Grouper installation was successful by typing
the following from the command prompt:

%> cd GRID_GROUPER_LOCATION

%> ant ui

In the Grid Grouper Administration UI that opens, use the following steps:

1. Click Group Browser to open the Group Browser window (Figure 5-35).

2. Click Add Grid Grouper to open the Add Grid Grouper dialog box.

3. From the Grid Grouper drop down menu, select
https://localhost:8443/wsrf/services/cagrid/GridGrouper

4. Click Add.

The UI adds the Grid Grouper,
https://localhost:8443/wsrf/services/cagrid/GridGrouper to the Grid Grouper
Service(s) tree and populates a stem/group hierarchy in a sub tree. In the
hierarchy there should be one stem, Grouper Administration, and under that
stem there should be one group, Grid Grouper Administrators (Figure 5-35).
Grid Grouper has been installed and configured.

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:SecureGlobusContainer
https://localhost:8443/wsrf/services/cagrid/GridGrouper
https://localhost:8443/wsrf/services/cagrid/GridGrouper

caGrid 1.2 User’s Guide

 112

Figure 5-35 Grid Grouper browser

Administrating Grid Grouper

Grid Grouper Administrators

Initially Grid Grouper has a root stem with one child stem named Grouper
Administration (grouperadministration). The Grouper Administrative stem contains
one group named Grid Grouper Administrators
(grouperadministration:gridgrouperadministrators). The Grid Grouper Administrators
group is the super user group for Grid Grouper; all members of this group have
administrative privileges on all the stems and groups within Grid Grouper.

Note: The individual groups and stems can also be assigned administrators. The GAARDS

UI provides a method of adding and removing administrators to/from the Grid

Grouper Administrators group. The Grid Grouper Administrator's group can be

managed like any other Grid Grouper group.

Administrating Stems

In Grouper/Grid Grouper, groups are organized into namespaces or stems. Each
stem can have a set of child stems and a set of child groups with exception to the
root stem which cannot have any child groups. The Stem hierarchy in Grid Grouper
is publicly visible to anyone accessing the service; however, the ability to view a
group within a stem publicly depends on the privileges for the group. A Stem can
have two types of privileges associated with it: the “Stem Privilege” and the “Create
Privilege”. Users with the “Stem Privilege” can create, modify, and remove child
stems. Users with the “Create Privilege” can create, modify, and remove child
groups.

To administrate stems with the GAARDS UI, use the following steps:

 caGrid Security

 113

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a Grid Grouper or
Stem Administrator).

3. Select Group Management > Group Browser to open the Group Browser
window.

4. Click Add Grid Grouper to open the Add Grid Grouper dialog box.

5. From the Grid Grouper drop down menu, select the URI of the Grid Grouper
you wish to administrate.

6. From the Credentials drop down menu, select the credential you wish to
use to administrate.

7. Click Add to load the Grid Grouper you specified into the Group Browser
window.

8. Select the stem you want to administer and click View.

A tab opens entitled with the stem’s name in the Details pane (Figure 5-35).
This tab will be referred to as the Stem Administration tab. The top of this tab
lists the Grid Grouper in which the stem exists, the full display name of the
stem in regards to the rest of the hierarchy, and the credentials you used to
obtain the stem. It also contains four sub tabs: Details, Privileges, Child
Stems, and Groups. The Details tab lists a stem’s metadata which includes:

 Stem Id – Unique Id assigned to the Stem by Grouper.

 Display Name – Full display name for the stem with context to the rest of
the hierarchy.

 System Name – Full system name for the stem with context to the rest of
the hierarchy.

 Display Extension – Local display name for the stem.

 System Extension – Local system name for the stem.

 Create – Date the stem was created.

 Create By – The identity of the user or service that created the stem.

 Last Modified – Date the stem was last modified.

 Last Modified By– The identity of the user or service who last modified
the stem.

 Description – Human readable description of the stem.

Of the metadata listed, only the display extension and description may be
updated. To update the metadata make the necessary changes and click
Update Stem.

caGrid 1.2 User’s Guide

 114

Figure 5-36 Group Management Browser

Stem Privileges

The stem hierarchy in Grid Grouper is publicly visible to anyone accessing the
service; however the ability to view a group within a stem depends on the privileges
for the group. A stem can have two types of privileges associated with it: the “Stem
Privilege” and the “Create Privilege”. Users with the “Stem Privilege” can create,
modify, and remove child stems. Users with the “Create Privilege” can create,
modify, and remove child groups.

The GAARDS UI provides the ability to administrate stem privileges. To list all the
existing privileges granted on a stem use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a Grid Grouper or
Stem Administrator).

3. Select Group Management > Group Browser to open the Group Browser
window.

4. Click Add Grid Grouper to open the Add Grid Grouper dialog box.

5. From the Grid Grouper drop down menu, select the URI of the Grid Grouper
you wish to administrate. From the Credentials drop down menu, select the
credential you wish to use to administrate.

6. Click Add to load the Grid Grouper you specified into the Group Browser
window (Figure 5-37). Select the stem to administer and click View.

7. Select the Privileges tab and click Get Privileges.

All the users with privileges on the stem and the privileges that each user
has are listed. For example in Figure 5-37, the stem shown lists one user
that has been assigned privilege(s); the user listed has been assigned the
Stem privilege.

 caGrid Security

 115

Figure 5-37 Listing of stem privileges

Adding/Revoking Privileges
Users without any existing privileges and users with existing privileges can be
granted/revoked privileges by using the following steps:

1. For users without any existing privileges, click Add Privilege(s). For users
with existing privileges, select the user from the privileges table and click
Update Privilege. The Update Stem Privilege(s) window opens (Figure
5-38).

2. If you are granting privileges to a user without existing privileges, specify the
user’s grid identity in the Grid Identity text field.

3. To grant privileges, select the privileges you wish to grant. To revoke
privileges, deselect the privileges you wish to revoke.

4. Click Update Privilege(s). Changes to Grid Grouper are committed and are
effective immediately.

Figure 5-38 Update Stem Privileges window

caGrid 1.2 User’s Guide

 116

Managing Child Stems

Each stem in Grid Grouper can have a set of child stems. The GAARDS UI provides
a means of listing, creating, and removing child stems. Since stems are publicly
readable any user may view the stem hierarchy; however only users with the “Stem
Privilege” may create and remove stems. To view the child stems for a given stem,
use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a Grid Grouper or
Stem Administrator).

3. Select Group Management > Group Browser to open the Group Browser
window.

4. Click Add Grid Grouper to open the Add Grid Grouper dialog box (Figure
5-39).

5. From the Grid Grouper drop down menu, select the URI of the Grid Grouper
you wish to administrate.

6. From the Credentials drop down menu, select the credential you wish to
use to administrate.

7. Click Add to load the Grid Grouper you specified into the Group Browser
window.

8. Select the stem you want to administer and click View to open the Stem
Administration tab for the selected stem.

9. Select the Child Stems tab; the stem’s child stems is listed in the Child
Stems table.

Figure 5-39 Managing child stems in the Group Management Browser

 caGrid Security

 117

Viewing a Child Stem

To view a child stem, use the following steps:

1. Select the stem to view from the Child Stems table.

2. Click View Stem to open the Stem Administration tab for the selected stem.

3. Adding a Child Stem

4. To add a child stem, use the following steps:

5. Enter a Local Name for the stem in the Local Name text field.

6. Enter a Local Display Name for the stem in the Local Display Name text
field.

7. Click Add Child Stem.

8. Removing a Child Stem

9. To remove a child stem, use the following steps:

10. Select the stem to remove from the Child Stems table.

11. Click Remove Stem.

Managing Groups

Each stem in Grid Grouper can have a set of groups. The GAARDS UI provides a
means of listing, creating, and removing groups; however only users with the
“Create Privilege” may create and remove groups. To view the child groups for a
given stem, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a Grid Grouper or
Stem Administrator).

3. Select Group Management > Group Browser to open the Group Browser
window.

4. Click Add Grid Grouper to open the Add Grid Grouper dialog box.

5. From the Grid Grouper drop down menu, select the URI of the Grid Grouper
you wish to administrate.

6. From the Credentials drop down menu, select the credential you wish to
use to administrate.

7. Click Add to load the Grid Grouper you specified in the Group Browser
window.

8. Select the stem you want to administer and click View to open the Stem
Administration tab for the selected stem.

9. Select the Groups tab; the stem’s groups are listed in the Child Group(s)
table.

caGrid 1.2 User’s Guide

 118

Figure 5-40 Managing groups in the Group Management Browser

Viewing a Group

To view a group, use the following steps:

1. Select the group to view from the Child Group(s) table.

2. Click View Group to open the Group Administration tab for the selected
group.

3. Adding a Group

4. To add a group, use the following steps:

5. Enter a Local Name for the stem in the Local Name text field.

6. Enter a Local Display Name for the stem in the Local Display Name text
field.

7. Click Add Group.

Removing a Group

To remove a group, use the following steps:

1. Select the group to remove from the Child Group(s) table.

2. Click Remove Group.

Administrating Groups

In Grouper/Grid Grouper groups are comprised of a set of metadata describing the
group, a set of members in the groups, and a set of privileges assigned to users for
protecting access to the group.

Grid Grouper provides three mechanisms for adding members to a group:

 directly adding a member,

 caGrid Security

 119

 adding a subgroup to a group, and

 making a group a composite of other groups.

Directly adding a user as a member to a group is straight forward; these members
are referred to as “Immediate Members”. Adding a subgroup to a group makes all
the members of the subgroup members of the group in which the subgroup was
added. Members in a group whose membership is granted by membership in a
subgroup are referred to as “Effective Members”. A group can also be set to a
“Composite” group. A composite group consists of a set operation (Union,
Intersection, Complement) on two other groups. For example, a composite group
consisting of the Intersection of Group X and Group Y would contain all the
members that are both members of Group X and Group Y. Members whose
membership is granted through a composite group are referred to as “Composite
Members”.

To protect access to groups in Grid Grouper, users can be assigned the following
privileges on a group: View, Read, Update, Admin, Optin, and Optout. Users with
the View privilege can see that the group exists. Users with the Read privilege can
read basic information about the group. Users with the Update Privilege can
manage memberships to the group as well as administer View, Read, and Update
privileges. Users with the Admin privilege can modify/administer anything on the
group: metadata, privileges, and memberships. Users with the Optin privilege can
add themselves as a member to a group, similarly users with the Opout privilege
can remove themselves from a group. By default Grid Grouper grants Read and
View privileges to all users on each group.

To administrate groups with the GAARDS UI complete the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a Grid Grouper or
Stem Administrator).

3. Select Group Management > Group Browser to open the Group Browser
window.

4. Click Add Grid Grouper to open the Add Grid Grouper dialog box.

5. From the Grid Grouper drop down menu, select the URI of the Grid Grouper
you wish to administrate.

6. From the Credentials drop down menu, select the credential you wish to
use to administrate.

7. Click Add to load the Grid Grouper you specified into the Group Browser
window.

8. Select the group you want to administer and click View.

A tab, entitled with the group’s name in the details pane opens. This tab is referred
to as the Group Administration tab. The top of the tab lists the Grid Grouper in which
the group exists, the full display name of the group in regards to the rest of the
hierarchy, and the credentials used to obtain the group. The tab also contains three
sub tabs: Details, Privileges, and Members. The Details tab lists a group’s
metadata, which includes:

 Group Id – Unique Id assigned to the group by Grouper.

caGrid 1.2 User’s Guide

 120

 Display Name – Full display name for the group with context to the rest of
the hierarchy.

 System Name – Full system name for the group with context to the rest of
the hierarchy.

 Display Extension– Local display name for the group.

 System Extension– Local system name for the group.

 Create– Date the group was created.

 Create By– The identity of the user or service that created the group.

 Last Modified– Date the group was last modified.

 Last Modified By– The identity of the user or service who last modified the
group.

 Description – Human readable description of the group.

Of the metadata listed, only the display extension, system extension, and
description can be updated by making the changes, and clicking the Update Group
button.

Figure 5-41 Administrating groups

Group Privileges

To protect access to groups in Grid Grouper, users can be assigned the following
privileges on a group:

 View - Allows user’s to see that the group exists.

 Read - Allows user’s to read basic information about the group.

 Update - Allows user’s to manage memberships to the group as well as
administer View, Read, and Update privileges.

 caGrid Security

 121

 Admin - Allows modification/administration of all aspects of the Group
including: metadata, privileges, and memberships.

 Optin - Allows user's to add themselves to a group.

 Optout - Allows user's to remove themselves from a group.

When a user accesses a group they will only be allowed to access the privileges
assigned to them. Users without any privileges assigned inherit the privileges
assigned to the GrouperAll user or default user. By default the GrouperAll is granted
Read and View privileges on each group.

To list all the existing privileges granted on a group, use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. Select Group Management > Group Browser to open the Group Browser
window.

4. Click Add Grid Grouper to open the Add Grid Grouper dialog.

5. From the Grid Grouper drop down menu, select the URI of the Grid Grouper
you wish to administrate. From the Credentials drop down menu, select the
credential you wish to use to administrate.

6. Click Add to load the Grid Grouper you specified into the Group Browser
window.

7. Select the group you want to administer and click View.

8. Select the Privileges tab and click Get Privileges.

All the users with privileges on the group and the privileges that each user
has are listed. For example, in Figure 5-42, the group shown lists two users
that have been assigned privilege(s); the first user has been assigned the
Admin privilege and the second user, GrouperAll, has been assigned Read
and Write privileges.

caGrid 1.2 User’s Guide

 122

Figure 5-42 Managing group privileges

Adding/Revoking Privileges
Users without any existing privileges and users with existing privileges can be
granted/revoked privileges by using the following steps:

1. For user's without any existing privileges, click Add Privilege(s). For users
with existing privileges, select the user from the Privileges table and click
Update Privilege(s). The Update Group Privilege(s) window.

2. If you are granting privileges to a user without existing privileges, specify the
user’s grid identity in the Grid Identity text field.

3. To grant privileges select the privileges you wish to grant. To revoke
privileges unselect the privileges you wish to revoke.

4. Click Update Privilege(s). Changes to Grid Grouper are committed and are
effective immediately.

Figure 5-43 Update Group Privileges window

Group Memberships

 caGrid Security

 123

Grid Grouper supports three types of group memberships:

 Immediate Membership - Directly adding a member to a group.

 Effective Membership - Adding an existing group to a group as a subgroup.
Adding a subgroup to a group makes all the members of the subgroup
members of the group in which the subgroup was added. Members in a
group whose membership is granted by membership in a sub group are
referred to as Effective Members.

 Composite Membership - Membership is based on a set operation (Union,
Intersection, or Complement) on two other groups. For example a composite
group consisting of the Intersection of Group X and Group Y would contain
all the members that are both members of Group X and Group Y. Members
whose membership is granted through a composite group are referred to as
Composite Members.

The GAARDS UI provides a means of listing, adding, and removing members from
groups. To view the members of a given group use the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account (You must be a Grid Grouper or
Stem Administrator).

3. Select Group Management > Group Browser to open the Group Browser
window.

4. Click Add Grid Grouper to open the Add Grid Grouper dialog box.

5. From the Grid Grouper drop down menu select the URI of the Grid Grouper
you wish to administrate. From the Credentials drop down menu select the
credential you wish to use to administrate.

6. Click Add to load the Grid Grouper you specified into the Group Browser
window.

7. Select the group you want to administer and click View.

8. Select the Members tab. Click List Members.

All the members of the group are listed. A member search can list all the
members of the group or can list the members of the group by membership
type (Immediate, Effective, Composite).

caGrid 1.2 User’s Guide

 124

Figure 5-44 Managing group memberships

Adding a Member
To add a member to a group use the following steps:

1. Click Add Member to open the Add Member window.
2. From the Member Type, select whether to add a User, Group, or

Composite as a member.

3. If you chose User, enter the grid identity of that user in the Member Identity
text field. If you chose Group, select the group from the Group drop down
menu. If you chose Composite, 1) select the composite type from the
Composite Type drop down menu, 2) select a group from the Left Group
drop down menu, and 3) select a group from the Right Group drop down
menu.

4. Click Add Member.

In Figure 5-45, the user is adding a composite member consisting of the
union of the staff group and the faculty group. It is important to note that a
group with a composite membership, also referred to as a composite group,
may only have one membership, which is the defined composite. A
composite group may not contain additional immediate, effective, or
composite members.

 caGrid Security

 125

Figure 5-45 Adding a member to a group

Removing a Member
To remove a member from a group, use the following steps:

1. Select the member to remove from the Members table.

2. Click Remove Member.

Members whose membership to a group is obtained through being a
member of a subgroup (Effective Membership) whose membership is
obtained through a composite cannot be directly removed using the method
just described. To remove effective members of a group, the member must
be removed from the subgroup that they are immediate members of. To
remove composite members from a group, the composite membership
associated with the group must be removed by clicking the Remove
Composite Member button.

Credential Delegation
The Credential Delegation Service (CDS) is a WSRF-compliant Grid service that
enables users/services (delegator) to delegate their Grid credentials to other
users/services (delegatee) such that the delegatee(s) may act on the delegator's
behalf. Consider a usecase where a user Bob wishes to invoke a simple workflow
where three services interact with one another sequentially. Upon completion
Workflow Step 1 calls Workflow Step 2, which in turn calls Workflow Step 3. Now
consider the following access control policies for these services:

 Bob has been granted access to each of these service resources

 Each of the services does not have access to the other services resources.

Since the services do not have access to one another's resources, the services
must connect to one another as Bob in order to successfully execute this workflow.
In order to interact with one another as Bob each of the first two service in the
workflow: Workflow Step 1 and Workflow Step 2 must have Bob's Grid credentials
such that they may authenticate as Bob. The CDS provides a secure mechanism for
Bob to provide his credentials to the workflow service such that they may act on his
behalf.

caGrid 1.2 User’s Guide

 126

Besides enabling secure workflow the CDS enables secure execution of other
technologies / frameworks including distributed queries and web application single
sign on.

Installation and Configuration
The Credential Delegation Service (CDS) is distributed as standalone project as well
as part of other projects such as caGrid. Each of the distributions contains a cds
directory herein referred to as CDS_LOCATION. To install and configure the CDS
please follow the steps below.

Step 1: Install Prerequisite Software

In order to install and run the CDS, it is required that the following prerequisite
software is installed:

 Java 1.5 JDK

 Ant 1.6.5

 Globus WS-Core with WS-Enum Support

 MySQL

 (Optional) If you want to deploy services to tomcat, you will need Tomcat
5.0.28

Step 2: Building CDS

If you have obtained a source release of the CDS you will need to build the CDS. To
build the CDS type the following from a command prompt:

%> cd CDS_LOCATION

%> ant clean all

http://java.sun.com/j2se/1.5.0/system-configurations.html
http://archive.apache.org/dist/ant/binaries/apache-ant-1.6.5-bin.zip
http://gforge.nci.nih.gov/frs/download.php/1334/ws-core-enum-4.0.3.zip
http://dev.mysql.com/downloads/mysql/5.0.html
http://tomcat.apache.org/download-55.cgi#5.0.28
http://tomcat.apache.org/download-55.cgi#5.0.28
http://tomcat.apache.org/download-55.cgi#5.0.28

 caGrid Security

 127

Note: Depending on the the CDS distribution it may be required to build the entire project

that the CDS is distributed with prior to building the CDS. For example if you have

obtained a caGrid source distribution this is required, if you received a CDS

standalone distribution this is not required.

Step 3: Obtain a Host Credential

The CDS requires that it runs as a secure service. In order to run a secure service,
the container hosting the service must run with a host credential. A host credential
consist of a X.509 certificate and private key. One of the features Dorian provides is
the ability to issue and manage host credentials. There are many methods of
retrieving host credentials, these methods include but are not limited to the
following:

 Requesting a credential from a known/trusted certificate authority (caGrid
Certificate Authority).

 Standing up a Dorian service.

 Standing up a simple certificate authority.

Step 4: Configure Globus To Trust the CDS

In order to securely invoke the CDS, we MUST configure Globus to trust the CA that
issued the host credentials we obtained in the previous step. To do this we place a
copy of the certificate for the CA that issued the host credentials in the Globus
trusted certificates directory. Unless otherwise specified during installation, the
Globus trusted certificate directory is usually USER_HOME/.globus/certificates.
Globus requires all CA certificates in its trusted certificates directory to be in PEM
format and to have a digit extension (0-9). For example if a CA certificate is stored in
the file cacert.pem in PEM format than in order to configure Globus to trust this
certificate authority it should be copied in to the directory
USER_HOME/.globus/certificates (create directory if needed) with the file name
cacert.0

Step 5: Configuring a Secure Container

Now that you have obtained host credentials, you may use them to configure a
secure container. The CDS can be run from a secure Globus container or a secure
Tomcat container. For directions on how to configure a secure Globus container,
see http://www.cagrid.org/wiki/CaGrid:How-To:SecureGlobusContainer. For
directions on how to configure a secure Tomcat container, see
http://www.cagrid.org/wiki/CaGrid:ConfigureTomcat.

Step 6: Configuring the CDS

The CDS is configured through a simple properties file,
CDS_LOCATION/etc/cds.properties. Below is an example of the CDS property file,
followed by a description of each of the properties:

caGrid 1.2 User’s Guide

 128

#General Configuration

gaards.cds.name=cds

gaards.cds.max.delegation.path.length=0

Database Configuration

gaards.cds.db.host=localhost

gaards.cds.db.port=3306

gaards.cds.db.user=root

gaards.cds.db.password=

#Key Manager Configuration

gaards.cds.dbkeymanager.key.encyption.password=password

CDS Properties

 gaards.cds.name - Unique name of the CDS, distinguishing one CDS from
another CDS on the same host. This will be used as the database name.

 gaards.cds.max.delegation.path.length - The maximum delegation path
length of credentials issued by the CDS. A value of 0 specifies that
credentials issued by the CDS cannot be delegated.

 gaards.cds.db.host - The host name of the CDS database.

 gaards.cds.db.port - The port to connect to the CDS database on.

 gaards.cds.db.user - The user id to use to connect to the CDS database.

 gaards.cds.db.password - The password to use to connect to the CDS
database.

 gaards.cds.dbkeymanager.key.encyption.password - This property is needed
if you are using the DB Key Manager
(org.cagrid.gaards.cds.service.DBKeyManager), it specifies a password
which is used to encrypt the keys of the delegated credentials in the
database.

Step 7: Adding an initial CDS Administrator (Optional)

The CDS maintains a group of administrators each of which is granted the ability to
manage and review all credential delegated through the CDS. Maintaining a list of
administrators is not required for operating a CDS, however administrative access is
valuable in evaluating the actions of users as well as for helping debug problems.
The CDS provides a command line tool for bootstrapping CDS with an initial
administrator(s). To levergage this command line utility type the following from a
command prompt:

%> cd CDS_LOCATION

%> ant addAmin

This will prompt you for the grid identity of the initial administrator to add, please
enter the grid identity of the user you want to add as the initial administrator and hit
enter.

 caGrid Security

 129

Step 8: Deploying CDS

Once you have configured a secure container (Globus or Tomcat) you need to
deploy the CDS to that container. To deploy the CDS to a secure Globus container
type the following from a command prompt:

%> cd CDS_LOCATION

%> ant deployGlobus

To deploy a CDS to a secure Tomcat container type the following from a command
prompt:

%> cd CDS_LOCATION

%> ant deployTomcat

No matter which container you choose you should see a significant amount of
output to the screen, if the deployment is successful you should see the words
"BUILD SUCCESSFUL" outputted to the screen.

Delegating a Credential
The Credential Delegation Service (CDS) allows a user/service (delegator) to
delegate their credential to other user/services (delegatee). To delegate a credential
the delegator must specify the following:

 Delegation Service - The Service URL of the delegation service.

 Credential - The credential to delegate.

 Delegation Lifetime - The amount of time that the CDS will be allowed to
issue credentials to third parties for.

 Delegation Path Length - A path length specifies the length of a credential
chain. For example a credential with a length of 2 means that the credential
can be delegated to a second party and the second party could in turn
delegate the credential to a third party at which point the third party can no
longer delegate the credential. The Delegation Path Length specifies the
path length of credential being delegated to the CDS. The credential being
delegated to the CDS will be used for issuing credentials to third party, thus
at minimum the delegation path length must be 1. A delegation path length
of 1 will suffice for the majority of use cases.

 Issued Credential Lifetime - The amount of time that credentials issued by
the CDS to third parties will be valid for.

 Issued Credential Path Length - A path length specifies the length of a
credential chain. For example a credential with a length of 2 means that the
credential can be delegated to a second party and the second party could in
turn delegate the credential to a third party at which point the third party can
no longer delegate the credential. The Issued Credential Path Length
specifies the path length of the credentials issued to third parties. An Issued
Credential Path Length of 0 indicates that the third party may not further
delegate the user's credential.

 Delegation Policy - The Delegation Policy specifies which parties are
allowed to obtain a delegator's credential.

caGrid 1.2 User’s Guide

 130

The CDS was designed to support multiple delegation policy types. In this guide we
will provide instruction on how to delegate a credential with a Identity Delegation
Policy as well as with a Group Delegation Policy.

Delegating a Credential (Identity Delegation Policy)

Delegating a credential with a Identity Delegation Policy enables the delegator to
provide a list of identities or delegatees that may have access to their credential.

The GAARDS UI provides a mechanism for delegating credentials, to delegate a
credential with the GAARDS UI complete the following steps:

1. Launch the GAARDS UI (for more information, see
http://www.cagrid.org/wiki/GAARDS:1.2:Administrative_UI).

2. Logon to the Grid using your user account (Specify a delegation path length
of 2).

3. From the MyAccount menu select Delegate Credential, this will launch the
Delegate Credential Step 1 of 2 window.

4. From the Delegation Service drop down select the Credential Delegation
Service to delegate you credential to.

5. From the Credential drop down select the credential to delegate.

6. From the Delegation Lifetime drop downs specify how long the CDS may
delegate your credential for.

7. From the Delegation Path Length drop select 1.

8. From the Issued Credential Lifetime drop downs specify how long the
credentials issued to third parties by the CDS should be valid for.

9. From the Issued Credential Length drop select 0.

10. From the Delegation Policy drop down select Identity Delegation Policy.

11. Click the Delegate Credential button, this will launch the Delegate Credential
Step 2 of 2 window which will allow you to specify your delegation policy.

12. To give a party the ability to obtain a delegate credential enter the Grid
Identity of the party in the Grid Identity text field and click the Add button.
Repeat this step for each party you wish to delegate your credential to. All
parties in which you have granted the ability to obtain your credential will be
listed in the table above the Grid Identity text field.

13. Click the Delegate Credential button to delegate your credential.

http://www.cagrid.org/wiki/GAARDS:1.2:Administrative_UI
http://www.cagrid.org/wiki/GAARDS:1.2:Administrative_UI:Login

 caGrid Security

 131

Delegating a Credential (Group Delegation Policy)

Delegating a credential with a Group Delegation Policy enables the delegator to
specify a Grid Grouper group such that the members of the group may have access
to their credential.

The GAARDS UI provides a mechanism for delegating credentials, to delegate a
credential with the GAARDS UI complete the following steps:

1. Launch the GAARDS UI (for more information, see
http://www.cagrid.org/wiki/GAARDS:1.2:Administrative_UI).

2. Logon to the Grid using your user account (for more information, see
http://www.cagrid.org/wiki/GAARDS:1.2:Administrative_UI:Login)

3. Specify a delegation path length of 2.

4. From the MyAccount menu select Delegate Credential, this will launch the
Delegate Credential Step 1 of 2 window.

caGrid 1.2 User’s Guide

 132

5. From the Delegation Service drop down select the Credential Delegation
Service to delegate you credential to.

6. From the Credential drop down select the credential to delegate.

7. From the Delegation Lifetime drop downs specify how long the CDS may
delegate your credential for.

8. From the Delegation Path Length list, select 1.

9. From the Issued Credential Lifetime drop downs specify how long the
credentials issued to third parties by the CDS should be valid for.

10. From the Issued Credential Length list, select 0.

11. From the Delegation Policy list, select Group Delegation Policy.

12. Click the Delegate Credential button. The Delegate Credential Step 2 of 2
page appears, which will allow you to specify your delegation policy.

13. To allow members of a Grid Grouper group to access your delegated
credential, specify the URL of the Grid Grouper in the Grid Grouper URL text
field and the system name of the group in the Group Name text field. You
can also click the Browse Groups button to browse to the group you want
and autofill the two fields for you.

14. Click the Delegate Credential button to delegate your credential.

 caGrid Security

 133

Get a Delegated Credential Using the GAARDS UI
The Credential Delegation Service (CDS) allows a user/service (delegator) to
delegate their credential to other user/services (delegatee). The GAARDS UI
provides a mechanism for delegatees to get a credential delegated to them by a
delegator. To obtain a delegated credential please complete the following steps:

1. Launch the GAARDS UI.

2. From the top menu, select Window > Preferences. The preferences
window appears.

3. In the tree on the left side, expand the Credential Delegation Service node
and select Credential Delegation Service(s). Verify that the CDS in which
you wish to obtain a credential from is listed in the Values box, if it is not you
can add it by entering the CDS Service URL in the text field and click Add.
Finally click Save. The window closes and your preferences are saved.

4. Logon to the Grid using your user account.

5. From the MyAccount menu select Get Delegated Credential. The Get
Delegated Credential window appears. The UI discovers all of the
credentials that have been delegated to you by other parties.

6. From the table, select the credential you want to obtain and click Get
Credential. This obtains the requested credential and launches the Proxy
Manager with the obtained credential shown. The Proxy Manager window
allows the management of grid proxies or grid credentials.

7. Click Set Default. You are now logged in as the party that delegated you
their credential.

caGrid 1.2 User’s Guide

 134

Finding Credentials that You Delegated
The Credential Delegation Service (CDS) allows a user/service (delegator) to
delegate their credential to other user/services (delegatee). The CDS provides a
mechanism for delegators to view and manage the credentials that they have
delegated. Delegators can leverage the GAARDS UI to manage the credentials they
delegated, this can be done by completing the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. From the Delegation Service list, select the Credential Delegation Service
you wish to manage your credentials on.

4. From the Credential list, select your Grid credential.

Click the Find Delegated Credentials button, this will connect to the
delegation service and obtain the credentials you delegated. If you wish to
restrict the search, you may specify the following search criteria before
clicking the Find Delegated Credentials button: (1) Delegation Identifier, (2)
Expiration Status, (3) Delegation Status.

http://www.cagrid.org/wiki/GAARDS:1.2:Administrative_UI

 caGrid Security

 135

Viewing/Updating a Delegated Credential

The GAARDS UI provides a mechanism of viewing the details of a delegated
credential. To do so you must first find the delegated credential as directed above.

1. From the Delegated Credential(s) table, select the credential you wish to
view.

2. Click the View Record button. The Delegated Credential window appears.

The Delegated Credential window contains the details for a delegated
credential. The window contains three tabs: (1) General Information, (2)
Delegation Policy, (3) Certificate Chain, (4) Auditing. The General
Information tab contains the following details of the delegated credential:

 Grid Identity - The identity of the party who owns the credential.

 Delegation Identifier - A unique identifier assigned to the delegated
credential by the CDS.

 Initiated On - The date that the delegated credential was requested.

 Approved On - The date that the delegated credential was approved.

 Expires On - The date that the delegated credential expires.

 Issued Credential Lifetime - The amount of time that credentials issued
by the CDS to third parties will be valid for.

 Issued Credential Path Length - A path length specifies the length of a
credential chain. For example a credential with a length of 2 means that
the credential can be delegated to a second party and the second party
could in turn delegate the credential to a third party at which point the
third party can no longer delegate the credential. The Issued Credential
Path Length specifies the path length of the credentials issued to third
parties. An Issued Credential Path Length of 0 indicates that the third
party may not further delegate the user's credential.

 Delegation Status-The status of the delegated credential: Pending,
Approved, or Suspended.

The CDS allows user's to suspend access to their credentials, once suspended the
delegated credential is terminated the user must delegate a new credential to re-
enable access to their credential. To suspend a delegated credential complete the
following steps:

1. View the details of the delegated credential you wish to suspend.

2. From the Delegation Status drop down select Suspended.

3. Click the Update Status button, this will suspend access to the delegated
credential.

The Certificate Chain tab contains the certificate chain of the delegated credential.
The Delegation Policy tab specifies which delegation policy was chosen and the
details of that delegation policy. The Auditing tab allows a user to search the
auditing logs for the Delegated Credential. For each delegated credential the CDS
maintains auditing information around events associated with the delegated
credential. The following is a list of auditing information that is captured by the CDS:

http://www.cagrid.org/wiki/CDS:1.2:Users_Guide:Managing_Delegated_Credentials#Finding_Credentials_that_You_Delegated

caGrid 1.2 User’s Guide

 136

 Delegation Initiation

 Delegation Approval

 Delegation Status Update

 Credential Issued

 Access Denied to Credential

Delegators may monitor the auditing information to determine when it was created,
when it was approved, who was issued a delegated credential, and who was not
granted access to a delegated credential.

Administrating the CDS

Finding Delegated Credentials

The Credential Delegation Service (CDS) allows a user/service (delegator) to
delegate their credential to other user/services (delegatee). The CDS provides a
mechanism for administrators to view and manage all the delegated credentials.
The GAARDS UI provides administrators a mechanism for monitoring and
managing credentials that have been delegated through the CDS, this can be done
by completing the following steps:

1. Launch the GAARDS UI.

2. Logon to the Grid using your user account.

3. From the Delegation Service drop down select the Credential Delegation
Service you wish to manage your credentials on.

4. From the Credential drop down select your Grid credential.

 caGrid Security

 137

5. Specify the search criteria you wish to confine your search to. The search
criteria includes (1) Grid Identity, (2) Delegation Identifier, (3) Expiration
Status, (4) Delegation Status.

6. Click the Find Delegated Credentials button, this will connect to the
delegation service and obtain the delegated credentials meeting your search
criteria.

Viewing/Updating a Delegated Credential

The GAARDS UI provides a mechanism of viewing the details of a delegated
credential. To do so you must first find the delegated credential as directed above.

1. From the Delegated Credential(s) table select the credential you wish to
view.

2. Click the View Record button, this will launch the Delegated Credential
window.

The Delegated Credential window contains the details for a delegated
credential. The window contains three tabs: (1) General Information, (2)
Delegation Policy, (3) Certificate Chain, (4) Auditing. The General
Information tab contains the following details of the delegated credential:

 Grid Identity - The identity of the party who owns the credential.

 Delegation Identifier - A unique identifier assigned to the delegated
credential by the CDS.

 Initiated On - The date that the delegated credential was requested.

 Approved On - The date that the delegated credential was approved.

 Expires On - The date that the delegated credential expires.

http://www.cagrid.org/wiki/CDS:1.2:Administrators_Guide:Managing_Delegated_Credentials#Finding_Delegated_Credentials

caGrid 1.2 User’s Guide

 138

 Issued Credential Lifetime - The amount of time that credentials issued
by the CDS to third parties will be valid for.

 Issued Credential Path Length - A path length specifies the length of a
credential chain. For example a credential with a length of 2 means that
the credential can be delegated to a second party and the second party
could in turn delegate the credential to a third party at which point the
third party can no longer delegate the credential. The Issued Credential
Path Length specifies the path length of the credentials issued to third
parties. An Issued Credential Path Length of 0 indicates that the third
party may not further delegate the user's credential.

 Delegation Status-The status of the delegated credential: Pending,
Approved, or Suspended.

The CDS allows administrators to suspend and re-instate access to delegated
credentials. To update the status of a delegated credential complete the following
steps:

1. View the details of the delegated credential you wish to change the status of.

2. From the Delegation Status list, select the new status.

3. Click the Update Status button, this will change the status of the delegated
credential.

The Certificate Chain tab contains the certificate chain of the delegated
credential. The Delegation Policy tab specifies which delegation policy was
chosen and the details of that delegation policy. The Auditing tab allows a
user to search the auditing logs for the Delegated Credential. For each
delegated credential the CDS maintains auditing information around events
associated with the delegated credential. The following is a list of auditing
information that is captured by the CDS:

 Delegation Initiation

 Delegation Approval

 Delegation Status Update

 Credential Issued

 Access Denied to Credential

Administrators may monitor the auditing information for a delegated
credential to determine when it was created, when it was approved, who was
issued a delegated credential, and who was not granted access to a
delegated credential.

Managing Administrators

Only users that have been granted administrative access to CDS will be able
to access the administrative features of the CDS. The administrative features
include the ability to monitor and manage delegated credentials and the
ability to manage administrative access to the CDS. Administrative access to
the CDS can be managed through the GAARDS UI.

http://www.cagrid.org/wiki/GAARDS:1.2:Administrative_UI

 caGrid Security

 139

To manage administrative access to the CDS using the GAARDS UI, from
the top menu bar select Account Management > Delegation Management
> Delegation Administrators. This will bring up the Administrator window.
From the Administrator window you 1) list all the users with administrative
access, 2) grant a user administrative access, or 3) revoke a user's
administrative access. To list all the users with administrative access click
the List Administrators button, this will list the grid identities of all the entities
with administrative access to the CDS in the Administrators table at the
bottom of the screen. To revoke a user's administrative access to the CDS
select the user from the Administrators table and click the Remove Admin
button. To grant a user administrative access to the CDS click the Add
Admin button. This will bring up the Add Administrator window which will
prompt you to enter the grid identity of the user you wish to grant
administrative access to. You can enter it directly or you can click the Find
button to search for the user you wish to grant administrative access to.

Authentication Management
The role of the Authentication Service project is to provide an integration point
between local identity management and caGrid identify federation. For example,
your institution already manages local identities (user accounts) in an LDAP server,
or RDBMS, or some other identity management system. In order for a user at your
institution to obtain grid credentials (so that he can authenticate to secure caGrid
services), the user must present a caGrid Dorian service with a SAML
authentication assertion, indicating that the user has successfully authenticated to
your institution’s identity management system. That assertion must be digitally
signed by an identity that the Dorian service trusts.

Information about the policy process for adding your institution’s asserting
credentials to a caGrid Dorian service can be found here:
http://gforge.nci.nih.gov/projects/swg/. Information about the technical process of
adding a trusted identity provider to a Dorian service using the GAARDS security

http://gforge.nci.nih.gov/projects/swg/

caGrid 1.2 User’s Guide

 140

user interface can be found here:
http://www.cagrid.org/mwiki/index.php?title=Dorian:1.2:Administrators_Guide:Mana
ging_Trusted_Identity_Providers

The AuthenticationService project defines a framework that can be used to create a
service which will interact with your institution’s local identity management system
and create SAML assertions that can be presented to a caGrid Dorian service.
Creating such a service enables your institution’s Identity Provider (IdP) to be
“plugged-in” to Dorian, which is the caGrid Identity Federation Service (IFS).

The AuthenticationService project provides a default implementation of that
framework. This implementation uses the NCICB’s Common Security Module
(CSM). Out of the box, CSM can be easily configured to work with most LDAP or
RDBMS identity management systems. (AuthenticationService requires version
3.2.1 of CSM).

The following sections describe how to configure and deploy the default CSM
AuthenticationService implementation. Details about configuring CSM can be found
here: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm. For
information about creating a custom implementation of the AuthenticationService
framework, see the caGrid 1.2 Programmer’s Guide.

Configuring the Service
The AuthenticationService needs to know the CSM application context name in
order to determine how to validate a user’s credentials (i.e. username and
password). It also needs information about the X.509 certificate and key (the
asserting credentials) it should use to sign SAML assertions. This information
should be specified in a Java properties file named idp.properties found in the root
directory of the AuthenticationService project (i.e. caGrid/projects/authentication-
service). This directory will be referred to simply as SRC.

Table 5-4 indicates what properties in this file must be edited.

Property Description
csm.app.context The name of the application context that contains the CSM

authentication policy. This value must map to an application name
specified in the JAAS configuration file (described later).

saml.provider.crt The absolute path to the X.509 certificate that the Authentication
Service should use to sign SAML assertions. This file must be in PEM
format.

saml.provider.key The absolute path to the X.509 private key.

saml.provider.pwd The password for the private key. You need this only if the key is
encrypted. (If there is no password, this value is ignored.)

Table 5-4 Properties in SRC/idp.properties

Deploying to the Container
The Authentication Service may be deployed to either a Globus standalone
container or the Globus web application (deployed in Tomcat 5.0.28). It must be
deployed to a secure container.

http://www.cagrid.org/mwiki/index.php?title=Dorian:1.1:Administrators_Guide:Managing_Trusted_Identity_Providers
http://www.cagrid.org/mwiki/index.php?title=Dorian:1.1:Administrators_Guide:Managing_Trusted_Identity_Providers
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm
http://gforge.nci.nih.gov/frs/?group_id=25

 caGrid Security

 141

The deployGlobus Ant target, defined in SRC/buid-deploy.xml, deploys the service to the

standalone Globus container pointed to by the GLOBUS_LOCATION environment variable. The

deployTomcat Ant target deploys the service to the Globus web application in the Tomcat

installation pointed to by the CATALINA_HOME environment variable.

Configuring the CSM
The default Authentication Service implementation uses CSM to validate a user’s
credentials and retrieve certain user attributes that are required by the caGrid
Dorian service. CSM uses the Java Authentication and Authorization Service
(JAAS) to enable modules that are responsible for authentication to be plugged in
using a standardized approach. This section provides examples of how to configure
CSM’s JAAS login modules for both LDAP and RDBMS.

Note: JAAS provides a flexible configuration mechanism. This section describes only one

approach (in particular, it describes the approach used by the caGrid installer.) For

details on configuring JAAS, see:

http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html

The SAML authentication assertion that must be presented to Dorian in order to
retrieve grid credentials must contain information about the user in the form of
SAML attributes. These attributes correspond to the following information:

 Uid: the user’s account name at his institution

 First Name

 Last Name

 Email Address

Thus, CSM must be configured to retrieve that information from either the LDAP
server or RDBMS. The JAAS configuration file that configures CSM in this way

should be named .java.login.config and placed in the home directory of the

user account that the Tomcat or the Globus container is running under. This file
must contain an entry with a JAAS application name that maps to the CSM

application context name that was specified as the value of the csm.app.context

property in SRC/idp.properties.

Figure 5-46 shows an example JAAS configuration file that configures the CSM
RDBMSLoginModule.

http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html

caGrid 1.2 User’s Guide

 142

myapp{

gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule required

 driver="org.gjt.mm.mysql.Driver"

 url="jdbc:mysql://somehost:3306/somedatabase"

 user="dbuser"

 passwd="dbpassword"

 TABLE_NAME="CSM_USER"

 USER_LOGIN_ID="LOGIN_NAME"

 USER_PASSWORD="PASSWORD"

 USER_FIRST_NAME="FIRST_NAME"

 USER_LAST_NAME="LAST_NAME"

 USER_EMAIL_ID="EMAIL_ID"

 encryption-enabled=”YES”;

};

Figure 5-46 Example JAAS configuration file for configuring CSM RDBMSLoginModule

In the above configuration, the JAAS application name is myapp. The driver, url,
user, and passwd parameters configure the JDBC connection to the RDBMS. In this
case, a MySQL driver is being used. The appropriate JDBC driver for your RDBMS

should be placed in SRC/lib before deploying the service.

The TABLE_NAME, USER_LOGIN_ID, USER_PASSWORD,
USER_FIRST_NAME, USER_LAST_NAME, and USER_EMAIL_ID parameters
indicate how the user’s credentials can be validated and the appropriate attributes
retrieved.

If CSM is being used to manage these accounts, then one can configure if
encryption should be used when validating the user’s password.

Figure 5-47 shows an example JAAS configuration file that configures the CSM
LDAPLoginModule.

myapp{

 gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule

required

 ldapHost="ldaps://my.ldap.host.org:636"

 ldapSearchableBase="ou=some,o=base"

 ldapUserIdLabel="cn"

 USER_FIRST_NAME="givenName"

 USER_LAST_NAME="sn"

 USER_EMAIL_ID="mail";

};

Figure 5-47 Example JAAS configuration file for configuring CSM LDAPLoginModule

Once the JAAS configuration file has been created and placed in the user’s home
directory, the Globus or Tomcat container can be started.

Authorization Management
The caGrid Authorization (Authz) component provides an integration point between
local authorization policy and grid-wide authorization policy. Authorization policy in
caGrid can be based on membership in groups that are defined in Grid Grouper.
Authorization policy within an organization is usually based on an individual's
identity within that organization. The Authz component provides a framework to map
groups that have been defined in the NCICB’s Common Security Module (CSM)
with groups that have been defined in a Grid Grouper service. The result is that local

 caGrid Security

 143

CSM administrators can extend access privileges to members of the caBIG
community based on membership in Grid Grouper groups, rather than having to
create local identities for each individual.

Since the Authz component has been designed to plug into the CSM framework,
caCORE systems that use CSM can plug in the Authz component without changing
code. (Authz requires version 3.2.1 of CSM).

This section describes how to configure CSM for a caCORE service to use the
Authz component. A detailed, step-by-step tutorial on using the Authz component
can be found on the caGrid wiki here:
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-
To:IntegrateCSMAuthorizationPolicy

JAAS Configuration
No changes are required to be made to CSM’s JAAS configuration.

ApplicationSecurityConfig.xml
caCORE services that are using CSM will have configured the
gov.nih.nci.security.configFile system property to point to an

ApplicationSecurityConfig.xml file. To use the Authz component, specify

gov.nih.nci.cagrid.authorization.CSMGridAuthorizationManager as the
implementation to use for both the authorization manager.

Figure 5-48 contains an example ApplicationSecurityConfig.xml file.

<security-config>

 <upt-context-name>UPT</upt-context-name>

 <application-list>

 <application>

 <context-name>SDK</context-name>

 <authentication>

 <lockout-time>100</lockout-time>

 <allowed-login-time>100</allowed-login-time>

 <allowed-attempts>3</allowed-attempts>

 <authentication-provider-class>

 </authentication-provider-class>

 </authentication>

 <authorization>

 <authorization-provider-class>

 gov.nih.nci.cagrid.authorization.impl.CSMGridAuthorizationManager

 </authorization-provider-class>

 <hibernate-config-file>

 /my/app/etc/hibernate.cfg.xml

 </hibernate-config-file>

 </authorization>

 </application>

 </application-list>

</security-config>

Figure 5-48 ApplicationSecurityConfig.xml file

http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:IntegrateCSMAuthorizationPolicy
http://www.cagrid.org/mwiki/index.php?title=CaGrid:How-To:IntegrateCSMAuthorizationPolicy

caGrid 1.2 User’s Guide

 144

hibernate.cfg.xml
Hibernate must be configured to use the c3p0 connection pool. Add the following

properties to the session-factory element in the hibernate.cfg.xml file.

<property name="hibernate.c3p0.min_size">5</property>

<property name="hibernate.c3p0.max_size">20</property>

<property name="hibernate.c3p0.timeout">300</property>

<property name="hibernate.c3p0.max_statements">50</property>

<property name="hibernate.c3p0.idle_test_period">3000</property>

Web Applications Classpath
Table 5-5 contains the jars that must be added to the web applications classpath.

From the Globus 4.0.3
WS Core Distribution

From other caGrid 1.2
Projects (these end up in
cagrid-1-1/ext/lib, when
building the Authz project).

From the Authz project’s
lib folder

addressing-1.0.jar caGrid-1.2-core.jar c3p0-0.8.5.2.jar

axis.jar caGrid-1.2-gridca.jar clm.jar

cog-axis.jar caGrid-1.2-gridgrouper-

client.jar

csmapi.jar

cog-jglobus.jar caGrid-1.2-gridgrouper-

common.jar

hibernate-3.0.5.jar

cryptix-asn1.jar caGrid-1.2-gridgrouper-

stubs.jar

spring-core.jar

cryptix.jar caGrid-1.2-metadata-

common.jar

spring-beans.jar

cryptix32.jar caGrid-1.2-metadata-

security.jar

jce-jdk13-125.jar caGrid-1.2-

ServiceSecurityProvider-

client.jar

jgss.jar caGrid-1.2-

ServiceSecurityProvider-

common.jar

puretls.jar caGrid-1.2-

ServiceSecurityProvider-

service.jar

wsrf_common.jar caGrid-1.2-

ServiceSecurityProvider-

stubs.jar

wsrf_core_stubs.jar cglib-nodep-2.1_3.jar

wsrf_core.jar grouper.jar

wss4j.jar mobius_common_client.jar

 mobius_factories.jar

 mobius_gme_client.jar

 caGrid Security

 145

From the Globus 4.0.3
WS Core Distribution

From other caGrid 1.2
Projects (these end up in
cagrid-1-1/ext/lib, when
building the Authz project).

From the Authz project’s
lib folder

 mobius_mako_client.jar

 mobius_tools.jar

 subject-0.2.1.jar

Table 5-5 jars to add to the web application’s classpath

Finally, a file named ObjectStateLoggerConfig.xml must be added to the classpath.
That file should look like Figure 5-49.

<?xml version="1.0" encoding="UTF-8"?>

<logging-config>

 <logger-name>CSM.Audit.Logging.ObjectState.Authorization</logger-name>

 <logger-config-file>log4jConfig.xml</logger-config-file>

 <log-level>info</log-level>

 <messageType>string</messageType>

 <domainObjectList>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Application</object-

name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ApplicationContext</o

bject-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Group</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.GroupRoleContext</obj

ect-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Privilege</object-

name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ProtectionElement</ob

ject-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ProtectionElementPriv

ilegeContext</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ProtectionGroup</obje

ct-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ProtectionGroupRoleCo

ntext</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Role</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.User</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.UserGroupRoleProtecto

nGroup</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.UserProtectionElement

</object-name>

caGrid 1.2 User’s Guide

 146

 <object-

name>gov.nih.nci.security.authorization.domainobjects.UserRoleContext</obje

ct-name>

 <object-

name>gov.nih.nci.security.authorization.dao.hibernate.ProtectionGroupProtec

tionElement</object-name>

 <object-

name>gov.nih.nci.security.authorization.dao.hibernate.RolePrivilege</object

-name>

 <object-

name>gov.nih.nci.security.authorization.dao.hibernate.UserGroup</object-

name>

 </domainObjectList>

 <loggingEnabled>true</loggingEnabled>

</logging-config>

Figure 5-49 ObjectStateLoggerConfig.xml

CSM Administration
This section provides an example scenario to illustrate the steps that a local CSM
administrator would take to extend access privileges to caGrid users.

In this scenario, the administrator would like to permit members of the
“cabig:researchers” group to query his caCORE system for
gov.nih.nci.cabio.domain.Gene objects. The Grid Grouper instance in which this
group is defined is running at
https://some.host:8443/wsrf/services/cagrid/GridGrouper.

Perform the following steps with the UPT.

1. Create a group named
{https://some.host:8443/wsrf/services/cagrid/GridGrouper}cabig:researchers
(Figure 5-50).

Figure 5-50 Create a group in the UPT

https://some.host:8443/wsrf/services/cagrid/GridGrouper
https://some.host:8443/wsrf/services/cagrid/GridGrouper

 caGrid Security

 147

In this scenario, it is assumed that the “gov.nih.nci.cabio.domain.Gene”
protection element already exists, and is a member of the “Domain Objects”
protection group (Figure 5-51).

Figure 5-51 Protection groups and protection group elements in the UPT

 It is also assumed that a role named “Domain Object Readers” exists and
has a single “READ” privilege (Figure 5-52).

caGrid 1.2 User’s Guide

 148

Figure 5-52 Role and privileges association in the UPT

 To grant the “READ” privilege to members of the
“{https://some.host:8443/wsrf/services/cagrid/GridGrouper}cabig:researchers
” group, assign the “Domain Objects” protection group and “Domain Object
Readers” role to this group (Figure 5-53 and Figure 5-54).

https://some.host:8443/wsrf/services/cagrid/GridGrouper

 caGrid Security

 149

Figure 5-53 Group, Protection Group and Roles Association in the UPT

Figure 5-54 Group, Protection Group and Roles Association in the UPT

Now, assuming that the following
/O=NIH/OU=NCI/OU=NCICB/OU=DEV/OU=localhost/OU=IdP [1]/CN=george
identity is a member of the “cabig:researchers” group, the following code
should print “Authorized: true” (Figure 5-55).

caGrid 1.2 User’s Guide

 150

String identity =

"/O=NIH/OU=NCI/OU=NCICB/OU=DEV/OU=localhost/OU=IdP [1]/CN=george";

String app = "myapp";

String objectId = "gov.nih.nci.cabio.domain.Gene";

String privilege = "READ";

AuthorizationManager mgr =

SecurityServiceProvider.getAuthorizationManager(app);

boolean authorized = mgr.checkPermission(identity, objectId, privilege);

System.out.println("Authorized: " + authorized);

Figure 5-55 Code verification

WebSSO
Single Sign On is the ability for a user to login into single application and then
navigate to another application within the same realm without being challenged for
credentials during that browser session. Traditionally, SSO solutions deal with
maintaining a single logged in session amongst web applications only. In Grid
domain, this signed-in session should be extended allowing the users to invoke grid
services without providing their credentials again.

The Web Single Sign On (WebSSO) Project is effort to provide the Single Sign On
capabilities for the web applications as well the grid services using a single solution.
It uses the caGrid’s GAARDS framework in back end to authenticate and validate
the user. It allows users to use single set of local credentials to both navigate
amongst different web applications and also invoke various grid services. WebSSO
also provides an automated mechanism for delegation and retrieval of user’s grid
credentials there by avoiding transfer of grid credentials around

It is built on top of JA-SIG’s Central Authentication Service (CAS) which provides
the core Single Sign On capability. For the caGrid WebSSO Project, we employ the
following JA-SIG CAS components:

 CAS Server v3.1 Stable Release: This is the server component of the SSO,
which facilitates authentication of user’s credentials, establishment of the
Single Sign On Session, and granting the SSO Session Tickets.

 JA-SIG’s CAS Client for Java v3.0: This is the client-side web agent that
includes classes for ticket validation, proxy ticket acquisition, servlets, filters
for implementing the client portion of the CAS protocol, and Assertion Java
object for representing the results of a validation attempt. This library is
usable for implementing custom CAS functionality, and can be used stand-
alone to CASify existing applications.

More details on CAS can be obtained from their website at: http://www.ja-

sig.org/products/cas/.

The following chapters give you a high level overview of the WebSSO Solution
developed by the caGrid Team. For detailed steps and instruction kindly refer to the
caGrid Programmers Guide.

Components of WebSSO Solution
The WebSSO Solution consists of a WebSSO server and a WebSSO client.

 WebSSO Server

http://www.ja-sig.org/products/cas/
http://www.ja-sig.org/products/cas/

 caGrid Security

 151

The WebSSO Server is installed centrally in a separate web container. It is
responsible for establishing the Single Sign On Session. It interacts with
local Authentication Service (IdP) to validate user’s local credentials and
then interacts with Dorian (IFS) to obtain user’s grid credentials. It also
prepares a delegation policy describing which host identities can obtain
user’s grid credentials and publish it in the Central Delegation Service (CDS)

 WebSSO Client

It is integrated with each target web application in the SSO realm. It is
responsible for checking if a Single Sign On session has been established or
not. If not, then route the user to WebSSO Server for authentication. Once
authenticated and Single Sign On session established, the WebSSO client
connects and retrieves user’s attributes as well grid credential.

Single Sign On Work Flow
Following is the process flow between various WebSSO / caGrid Components to
establish a Single Sign On session:

1. User initiates a request to the target application (which is protected by the
SSO Framework) by typing its URL into the browser. The user's request is
intercepted by the CAS Agent, which searches for an established session.
Since it does not exist, it redirects the user’s request to the CAS Server
providing the target application’s URL as return point.

2. The CAS Server displays a login page, and the user provides their
username/password pair for authentication.

3. The CAS server provides these credentials to the Authentication Service.

4. If the credentials are valid, the Authentication Service returns a signed SAML
Assertion to the CAS Server.

5. The CAS server passes the signed SAML assertion to Dorian.

caGrid 1.2 User’s Guide

 152

6. Dorian ensures that the SAML assertion is signed by a registered
Authentication Service and returns short-term Grid Credentials (Grid Proxy)
for the user.

7. They CAS server validates the Grid Proxy obtained from Dorian against the
GTS to make sure that it is still valid and the CA has not be revoked.

8. Once validated, the CAS server obtains the list of Host Identities from the
configuration files and formulates a delegation policy. It publishes this
delegation policy, passing the user’s Grid Credentials to the Credential
Delegation Service

9. Once the Delegation Policy is published in the Credential Delegation Service
successfully, it returns an End Point Reference (EPR) pointing to this
Delegation Policy back to the WebSSO Server

10. Now it formulates a service ticket, attaches it as part of the URL as a GET
parameter, and redirects the user back to the application using the provided
return URL.

11. The CAS Agent for the application intercepts the request and retrieves the
Service Ticket. It validates this Ticket with the CAS Server to ensure the user
was authenticated recently.

12. CAS Server validates the ticket and returns an assertion object with the
user's attributes to the client. The CAS Agent retrieves this information, and
attaches it to user Request/Session.

13. The CAS Agent connects to the Credential Delegation Service using the
Host Credentials of the Target Web Application to retrieve the User’s Grid
Credentials (Grid Proxy) by passing the Delegation EPR(End Point
Reference).

14. The Delegation Server retrieves the Host Identity from the call and checks it
against the user's published policy. If the application has been given
delegation rights, it returns the Grid Proxy for that user back to the CAS
Agent.

15. The CAS Agent validates the Grid Proxy against GTS and the attaches it as
an attribute to the Session and forwards the request to the target application.

16. The Target Application can retrieve all user attributes from the
Request/Session including the user’s Grid Credentials. It then can use this
Grid Credential to access a grid service on user’s behalf.

Installation/Configuration of WebSSO Components
Following are high level steps required to configure/ integrate various WebSSO
Components.

WebSSO Server

1. Obtain the WebSSO Server Release from caGrid Download Center.

2. Configure the WebSSO Properties.

3. Configure the Authentication Service Information (IdP).

 caGrid Security

 153

4. Configure the Dorian Information (IFS).

5. Provide list of Host Identities to which the User’s Grid Credentials are to be
delegated.

6. Configure the Delegation Service (CDS) which would hold the delegation
policy.

7. Place the Sync Description File, if you choose to start SyncGTS
Programmatically.

8. Build the WebSSO Project.

9. Deploy the Server Web Application into a web container.

10. Secure the Web Container for SSL.

WebSSO Client

1. Obtain the WebSSO Client Release from the caGrid Download Center.

2. Copy all the jar files in your web application’s lib directory.

3. Configure WebSSO Filters into your web application’s web.xml file.

4. Provide the path to Host’s cert and key file (used for connecting to
delegation service).

5. Configure WebSSO Client to talk to the WebSSO Server via the
cas.properties file.

6. Copy and install the Server certificates to facilitate SSL.

7. Place the Sync Description File in the classpath, if you choose to start
SyncGTS Programmatically.

8. Deploy your web application with WebSSO Client embedded inside into the
web container.

Accessing WebSSO Attributes from the Client Application
WebSSO Client retrieves User’s Attributes from the WebSSO Server. It also
retrieves User’s Grid Credentials from the Central Delegation Service (CDS). All
these attributes and grid credentials are stored in the HTTP Session of the user as
session attributes. Following is list of attributes which are available to the application
for retrieval from the HTTP Session. The exact attribute names are available in the
caGrid Programmer’s Guide.

 User’s First Name

 User’s Last Name

 User’s Email Id

 User’s Grid Identity

 User’s Grid Credential

 End Point Reference to the published Delegation Policy in CDS

caGrid 1.2 User’s Guide

 154

WebSSO Login Page
When the WebSSO solution is deploy, upon logging into any of the secured
application within the SSO Realm, the user is redirected to the WebSSO Login
Screen as shown below.

On the login form there are three entries which the user needs to provide.

 NetID: It is the user’s local login id at that particular institution.

 Password: It is the user’s local password. The password restriction as
enforced by actual authentication service. WebSSO Server doesn’t impose
any additional restrictions.

 Authentication Service: It is pull down menu providing all the available
Authentication Services configured for this instance of the WebSSO Server.
Based on the institution to which the user belongs, the user can select his
local Authentication Service. The login credentials provided by the user are
authenticated against the selected Authentication Service.

 155

Chapter 6 Workflow Services
This chapter describes the caGrid implementation of a workflow, which provides a
grid service for submitting and running workflows that are composed of other grid
services.

Topics in this chapter include:

 Introduction on this page

 The Business Process Execution Language (BPEL) on this page

 Creating a Sample Workflow Using Test Services on page 156

 Installing Test Services on page 156

 Configuring and Running a Workflow on page 156

Introduction
caBIG aims to bring together disparate data and analytic resources into a “World
Wide Web of cancer research”. This will be achieved through common standards
and software frameworks for the federation of these resources into “grid” services.
Many of the tasks in the collection and analysis of cancer-related data on the grid
involve the use of workflow. In this context, workflow is defined as the connecting of
services to solve a problem that each individual service could not solve. caGrid
implements workflow by providing a grid service for submitting and running
workflows that are composed of other grid services.

The Business Process Execution Language (BPEL)
The Business Process Execution Language (BPEL) is an XML language for
describing business process behavior based on web/grid services. BPEL is layered
on top of other Web technologies such as WSDL 1.1, XML Schema 1.0, XPath 1.0,
and WS Addressing, which makes it a perfect candidate for use in caGrid. The
BPEL notation includes flow control, variables, concurrent execution, input and
output, transaction scoping/compensation, and error handling. A BPEL process
describes a business process, which often invokes Web/Grid services to perform
functional tasks. A process can be either abstract or executable. Abstract
processes are similar to library APIs: they describe what the process can do with
inputs and outputs, but they do not describe how the work actually gets done.
Abstract processes are useful for describing a business process to another party
that wants to implement the process. Executable processes do the "heavy lifting";
that is, they contain all of the execution steps that represent a cohesive unit of work.
The focus of this document is on executable processes, as they are concrete
workflows that can run through the workflow service.

Some vocabulary must be established to understand a BPEL document. While a
typical domain user such as an oncologist is not expected to write a BPEL
document, it is expected that developers will be able to produce BPEL from higher-
level tools. In BPEL, a process consists of activities connected by links. A process
sometimes only contains one activity, but that is usually a container for more
activities. The path taken through the activities and their links is determined by many
things, including the values of variables and the evaluation of expressions. The

caGrid 1.2 User’s Guide

 156

starting points are called start activities, and their “create instance” attributes are
set to "yes". When a start activity is triggered, a new business process instance is
created. Each service that is invoked by the workflow is called a PartnerLink, and
BPEL extends this concept to include the client that is invoking the workflow.

Creating a Sample Workflow Using Test Services
A general process for creating and submitting workflows using caGrid can be
defined by the following high level steps:

1. Get the endpoints of the services of which the workflow should consist.
These endpoints can be obtained from a query to the Index Service based
on the Service Metadata, though that must be done prior to creating the
workflow.

2. Define Partner Links for the services that will interact.

3. Create a BPEL document using a GUI if available.

4. Submit the BPEL document to the WorkflowFactoryService using the
Workflow GUI client.

5. The command-line client submits the workflow and starts it using the
specified input document.

Installing Test Services
To test the workflow service locally, a set of simple test services are provided, and
can be installed using the following steps:

1. Download the services from
http://gforge.nci.nih.gov/frs/download.php/2223/workflow-services.zip

2. Unzip the services into a directory.

3. Enter cd workflow-services/TestService1

4. Make sure that $CATALINA_HOME is set and points to a working Tomcat
installed with caGrid 1.2.

5. Run ant deployTomcat. This deploys the Test Service1 in Tomcat. Do not
install the second service yet.

6. Restart Tomcat and check if the service is up by testing this link :
http://<hostname>:<port>/wsrf/services/cagrid/WorkflowTestService1?wsdl

Configuring and Running a Workflow
The Workflow Submission GUI is for submitting and monitoring BPEL workflows. It
also allows discovering and adding services to be used in the workflow and reports
the output of the workflow once the workflow has executed.

Note: Prerequisites to using the Workflow Submission GUI are a Tomcat container with

caGrid installed and a Tomcat container with ActiveBPEL installed. These are

already done if the Workflow component was installed using the caGrid installer.

http://gforge.nci.nih.gov/frs/download.php/2223/workflow-services.zip

 Workflow Services

 157

The following sections describe the capabilities of the Workflow Submission GUI, by
using the example workflow and services provided by caGrid that were created and
installed above.

Launching the Workflow Submission GUI
Use the following steps to launch the Workflow Submission GUI.

1. Browse to the WorkflowFactoryService dir under the caGrid source
distribution (caGrid/projects/workflow/WorkflowFactoryService/). From this

directory, run ant ui to launch the Workflow GUI.

2. In the GU, select Window > Preferences. Browse to the
WorkflowFactoryService(s) endpoint option and make sure it points to the
Workflow service that needs to be validated (Figure 6-1).

3. Use the Add and Remove buttons to add new Workflow services endpoints.
Use the Move up and Decrease keys to move the endpoint up and down.

Figure 6-1 Adding service endpoints in the Workflow Submission GUI

Submitting a Workflow
To submit a workflow, use the following steps.

1. Click Submit Workflow to open the Submit Workflow window. Enter the
path to the BPEL document in the BPEL File text field or browse to the
location of the BPEL document (Figure 6-2). For the validation test, select
the workflow document Test1.bpel in the WorkflowFactoryService folder.

2. Name the workflow name the same as the name of the BPEL document
(Test1 in the validation example) and click Add Partner Links.

caGrid 1.2 User’s Guide

 158

Figure 6-2 Submit Workflow window

3. In the Partner Link Frame dialog that opens, enter the endpoints of the
services included in the workflow (Figure 6-3). In the validation example,
there is one service invoked twice in the workflow. Enter appropriate values
in the fields. For the validation test, the values are:

 Select Type: Static

 Service Endpoint:
http://localhost:8080/wsrf/services/cagrid/WorkflowTestService1

 WSDL Location:
http://localhost:8080/wsrf/share/schema/WorkflowTestService1/Workflow
TestService1.wsdl

 Namespace:
http://sample1.tests.workflow.cagrid.nci.nih.gov/WorkflowTestService1

 The localhost:8080 should be replaced with the appropriate host:port on
which the test service is deployed (From the first part of the document).

4. Click Add.

http://localhost:8080/wsrf/services/cagrid/WorkflowTestService1
http://localhost:8080/wsrf/share/schema/WorkflowTestService1/WorkflowTestService1.wsdl
http://localhost:8080/wsrf/share/schema/WorkflowTestService1/WorkflowTestService1.wsdl
http://sample1.tests.workflow.cagrid.nci.nih.gov/WorkflowTestService1

 Workflow Services

 159

Figure 6-3 Partner Link Frame dialog

Submitting a Workflow
Click Submit to submit the workflow to a pre-configured Workflow Factory Service.
The BPEL document is then validated and submitted to the Workflow Engine. If
there are no errors the Status is changed from Pending to Submitted (Figure 6-4).

caGrid 1.2 User’s Guide

 160

Figure 6-4 Submitting a workflow

Executing a Workflow
The next step is to execute the submitted workflow with some input.

1. In the current implementation, paste the input XML into the text area. For the
validation test, copy the following XML blob into the input XML Text area:

<ns1:InvokeRequest

xmlns:ns1="http://sample1.tests.workflow.cagrid.nci.nih.gov/WorkflowT

estService1"><ns1:invokeInput>Test</ns1:invokeInput></ns1:InvokeReque

st>

2. Click Start. The workflow starts and the status changes from Submitted to
Active (Figure 6-5).

Figure 6-5 Executing a workflow

Querying for Status
For workflow status, click Get Status. If the status is different from the existing
status (on the left hand corner of the GUI), it updates to the latest status.

Getting Workflow Output
For workflow output, click Get Status. If the workflow is Done, the workflow output
is displayed in the output text area (Figure 6-6).

 Workflow Services

 161

Figure 6-6 Workflow output

Getting Detailed Status
When a long workflow is submitted and you would like to see which portion of the
workflow is currently being executed, click Get Details to see where the current
workflow execution is taking place. The GUI displays an XPath expression of the
node in Workflow Document and its status (Figure 6-7)

caGrid 1.2 User’s Guide

 162

Figure 6-7 Details status

Terminating a Workflow
Since workflows are modeled as WSRF resources, they have a lifetime associated
with them. The Workflow service provides a standard “destroy” operation to stop the
workflow and free up all the resources that are used by the workflow

Pausing and Resuming a Workflow
The command-line client provides an operation by which an active workflow can be
paused. Running this command results in the service invoking the “pause” operation
of the workflow management service using the workflow id.

The command-line client also provides an operation by which a paused workflow
can be resumed. Running this command results in the service invoking the “resume”
operation of the workflow management service using the workflow id.

Workflow Client Overview
The Taverna Workbench allows users to construct complex workflows which
consists multiple types of components, each type of component is called a
processor. These components may locate on different machines, are orchestrate by
Taverna, and the results are gathered and shown in the workbench. Current version

 Workflow Services

 163

of Taverna (1.7.0.0) supports many types of processors, including apiconsumer
processor, beanshell processor, biomart processor, biomody processor, java
processor, soaplab processor, wsdl processor, etc. Taverna also provides a set of
Service Provider Interfaces (SPI) which are extending points for the developers to
provide additional functionality for a specific purpose. Using SPI, a plug-in is
developed for the CaGrid users to add grid services in a Taverna workflow, and this
plug-in is called taverna-gt4-processor. With this processor, a Taverna workflow is
aware of the CaGrid services, and could orchestrate the grid services in CaGrid.

Getting Started with the Workflow Client
Before using the GT4-processor plug-in to create, run and monitor CaGrid workflow
with Taverna, users are strongly suggested to read Taverna 1.7 Users Guide
located at: http://www.mygrid.org.uk/usermanual1.7/user_guide.html, through which
one could get to know the basic instructions on how to create a workflow in Taverna.

Adding GT4 processor Plug-in
In order to use the GT4 processor, one must first add it into Taverna workbench as
a plug-in. Start Taverna, open Tools > Plugin Manager > Find New Plugins >
Add Plugin Site, add the name and URL of the site where the plug-in resides in
(GT4 and http://www-unix.mcs.anl.gov/~madduri/taverna/, respectively, in the
example below).

Adding GT4 Scavenger
In Taverna, a scavenger represents a processor type. For example, a WSDL
scavenger represents a web service with a WSDL description. When you add a
WSDL scavenger into Taverna workbench, all the porttypes and operations in this
WSDL is visible and each operation could be added into the workflow as a WSDL
processor. A GT4 scavenger represents all the grid services registered at a given
service index. For example, we can add a new GT4 scavenger whose service index
location is: http://cagrid-index.nci.nih.gov:8080/wsrf/services/DefaultIndexService,
the default caGrid service registry.

http://www.mygrid.org.uk/usermanual1.7/user_guide.html
http://www-unix.mcs.anl.gov/~madduri/taverna/
http://cagrid-index.nci.nih.gov:8080/wsrf/services/DefaultIndexService

caGrid 1.2 User’s Guide

 164

Then the GT4 scavenger is added to the Available Processors list in the workbench
panel.

Double-click the GT4 Scavenger and get services and operations list in the newly
added scavenger.

 Workflow Services

 165

Now add GT4 processors in the scavenger into Taverna workflow.

Workflow Modeling and Execution

Workflow Modeling
The following comprise a Taverna workflow:

caGrid 1.2 User’s Guide

 166

 Input and output

 Processors

 XML splitters which aggregates/splits the input/output data for the
processors.

 Data links

 Control links

We are not going to explain these concepts in detail, again, you are recommended
to read Taverna User’s Manual to get instructions.

Adding a processor In the first step, we could add a new processor into an empty
workflow. See the figure below, we add a processor findProjects. Find the operation
findProjects in Available Processors, right click and choose Add to model, the
processor is added into a new workflow which is shown in the diagram in the right.

Adding a XML Splitter In Taverna it is possible to directly provide the XML data
needed by WSDL services, but sometimes users might find some XML data
elements are too verbose to handle. Taverna provides 'XML splitters' which
interrogate the data structure and present to the user the internal data elements.
One XML splitter will resolve the input XML data structure by a single level, so
multiple splitters might be needed when the XML data contains multiple-level
complex types. For example, the XML element parameters is the input of processor
findProjects, it contains a text node context as its sub-element, by adding an XML
splitter in the input port of processor findProjects, the user could directly input the

 Workflow Services

 167

value of element context. Double click the data element on which you want to add
the XML splitter, choose Add XML splitter.

A new splitter is added, with a data link to the processor to which the data element
belongs.

Assigning a default value to a parameter We could assign a default value to a
parameter. For example, we could assign value caCore to parameter context (the
input of XML splitter parametersXML). Each time the workflow is initiated, the
default value is assigned to the parameter.

caGrid 1.2 User’s Guide

 168

Adding a data link Data links exist between workflow inputs, processors and
workflow outputs. For example, a data link between processor A and B will feed the
output of A to the input of B. In the figure below we could see many data links, and
these data links are added automatically when we add XML splitters for processors.

 Workflow Services

 169

Data links can also be added manually. For example, if we want to feed the output
of XML splitter parametersXML2 (i.e., XML element Project) to the input of XML
splitter projectXML (also XML element Project), we can find the output in the
Advanced model explorer panel, right click and choose the target to connect to.

caGrid 1.2 User’s Guide

 170

In the figure below we can see that a data link between parametersXML2 and
projectXML is added.

 Workflow Services

 171

Adding a control link Control links represents the control flow between processors.
The target processor of a control link cannot start until the source processor
completes.

Adding an input/output In Advanced model explorer, Workflow inputs and Workflow
outputs nodes are used to create workflow inputs and outputs respectively. Right
click Workflow inputs/outputs, select Create new input or Create new output. After
these nodes are created, the users can connect them to the processors.

A sample workflow The sample workflow is made up of two processors, findProjects
and findPackagesInProject, together with some XML splitters to process their
input/output. The purpose of this workflow is straightforward. Step 1: use processor
findProjects to get a list of projects related to a context, and in Step2:
findPackagesInProject use processor find all the packages in each of the projects.
Because the input and output data of these two steps do not fit exactly, we add
three xml splitters to transform the output of findProjects into the input of
findPackagesInProjects. These three XML splitters are getProject, projectXML and
prepareProject, and they are with color purple. The processors are with color green.
We use another XML splitter, inputContext, to help the user input the context of the
projects to query. In this example, variable context has a default value of caCore. An
output node, projectsinformation, is created to store the packages information for
multiple projects.

caGrid 1.2 User’s Guide

 172

 Workflow Services

 173

Workflow Execution
Select File > Run workflow… to run a workflow in workbench.

caGrid 1.2 User’s Guide

 174

Then the workbench is switched to the Results perspective. The execution trace of
the workflow, the status of each processor could be seen with text as well as graph.

 Workflow Services

 175

The intermediary output of processor findPackagesInProject:

The result of this sample workflow:

A More Complex Example

This workflow shows the coordinated use of two services in CaGrid, i.e., the caDSR
(Cancer Data Standards Repository) and EVS (Enterprise Vocabulary Services)
services. caDSR is to define a comprehensive set of standardized metadata
descriptors for cancer research terminology used in information collection and
analysis. EVS provides resources and services to meet NCI needs for controlled
terminology, and to facilitate the standardization of terminology and information
systems across the Institute and the larger biomedical community. This sample
workflow is to find all the concepts related to a given context, for example, caCore. It
is made up of four processors, several XML splitters between them, and a beanshell
processor to do some XML transformation which can not be done by XML splitters
(XML splitter cannot handle XML attributes). To accelerate the demo, we use two
local java widgets, extract elements from a list, to filter out some intermediate results
so that the workflow will complete quickly. This reduction does not influence the
effect of the demo.

1. Use context information to invoke findProjects in caDSR, and get the
project(s) information.

2. Use project information to invoke findClassesInProject in caDSR, to get the
classes’ metadata.

3. Use project and classes metadata to invoke findSemanticMetadataForClass
in caDSR, to get the semantic data for classes, including conceptName.

caGrid 1.2 User’s Guide

 176

4. Use conceptName to invoke searchDescLogicConcept in EVS, to get
detailed concept information.

 Workflow Services

 177

caGrid 1.2 User’s Guide

 178

 The execution trace.

 179

Appendix A References

Scientific Publications
[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S.

Meder, V. Nefedova, D. Quesnal, and T. S., "Data Management and Transfer in
High Performance Computational Grid Environments," Parallel Computing Journal,
vol. 28, pp. 749-771, 2002.

[2] W. E. Allcock, I. Foster, and R. Madduri, "Reliable Data Transport: A Critical Service
for the Grid.," in Proceedings of Building Service Based Grids Workshop, Global
Grid Forum 11. Honolulu, Hawaii, USA, 2004.

[3] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ripeanu, E. Seidel,
and B. Toonen, "Cactus-G Toolkit: Supporting Efficient Execution in Heterogeneous
Distributed Computing Environments," in Proceedings of the 4th Globus Retreat.
Pittsburg, PA, 2000.

[4] H. Andrade, T. Kurc, A. Sussman, and J. Saltz, "Active Proxy-G: Optimizing the
Query Execution Process in the Grid," in Proceedings of the ACM/IEEE
Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer
Society Press, 2002.

[5] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I. Foster, "Applying Chimera
Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey," in Proceedings
of the ACM/IEEE Supercomputing Conference (SC2002). Baltimore, MD: ACM
Press/IEEE Computer Society Press, 2002.

[6] M. P. Atkinson and et.al., "Grid Database Access and Integration: Requirements
and Functionalities," Technical Document, Global Grid Forum.
http://www.cs.man.ac.uk/grid-db/documents.html, 2002.

[7] F. Berman, H. Casanova, J. Dongarra, I. Foster, C. Kesselman, J. Saltz, and R.
Wolski, "Retooling Middleware for Grid Computing," NPACI & SDSC enVision, vol.
18, 2002.

[8] M. Beynon, T. Kurc, A. Sussman, and J. Saltz, "Design of a Framework for Data-
Intensive Wide-Area Applications," in Proceedings of the 2000 Heterogeneous
Computing Workshop (HCW2000). Cancun, Mexico, 2000.

[9] H. Casanova, O. Graziano, F. Berman, and R. Wolski, "The AppLeS Parameter
Sweep Template: User-Level Middleware for the Grid," in Proceedings of the
ACM/IEEE Supercomputing Conference (SC2000): ACM Press/IEEE Computer
Society Press, 2000.

[10] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C.
Kesselman, P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger, and B. Tierney,
"Giggle: A Framework for Constructing Scalable Replica Location Services," in
Proceedings of the ACM/IEEE Supercomputing Conference (SC2002): ACM
Press/IEEE Computer Computer Society Press, 2002, pp. 1-17.

[11] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. Nefedova, J.
Lee, A. Sim, A. Shoshahi, B. Drach, D. Williams, and D. Middleton, "High-
performance remote access to climate simulation data: a challenge problem for data
grid technologies," Parallel Computing, vol. 29, pp. 1335-1356, 2003.

[12] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of
Large Scientific Datasets," Journal of Network and Computer Applications, vol. 23,
pp. 187-200, 2000.

http://www.cs.man.ac.uk/grid-db/documents.html

caGrid 1.2 User’s Guide

 180

[13] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda, "Mapping Abstract Complex
Workflows onto Grid Environments," Journal of Grid Computing, vol. 1, pp. 25-39,
2003.

[14] E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak, N. P. Chue Hong, C.
Kesselman, S. Patil, L. Pearlman, and M. Su, "Grid-Based Metadata Services," in
Proceedings of the 16th International Conference on Scientific and Statistical
Database Management (SSDBM '04), 2004.

[15] I. Foster and C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit.,"
International Journal of High Performance Computing Applications, vol. 11, pp. 115-
-128, 1997.

[16] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation," in Proceedings of the
14th Conference on Scientific and Statistical Database Management (SSDBM '02),
2002.

[17] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, "Condor-G: A
Computational Management Agent for Multi-institutional Grids," in Proceedings of
the Tenth International Symposium on High Performance Distributed Computing
(HPDC-10): IEEE Press, 2001.

[18] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, "ICENI: An Open
Grid Service Architecture Implemented with JINI," in Proceedings of the ACM/IEEE
Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer
Society Press, 2002.

[19] A. S. Grimshaw and W. Wulf, "The Legion: Vision of a Worldwide Virtual Computer,"
Communications of the ACM, vol. 40, pp. 39--45, 1997.

[20] S. Hastings, S. Langella, S. Oster, and J. Saltz, "Distributed Data Management and
Integration: The Mobius Project," Proceedings of the Global Grid Forum 11 (GGF11)
Semantic Grid Applications Workshop, Honolulu, Hawaii, USA., pp. 20-38, 2004.

[21] S. Langella, S. Oster, S. Hastings, F. Siebenlist, T. Kurc, and J. Saltz, "Dorian: Grid
Service Infrastructure for Identity Management and Federation," presented at The
19th IEEE Symposium on Computer-Based Medical Systems, Special Track: Grids
for Biomedical Informatics, Salt Lake City, Utah., 2006.

[22] R. Oldfield and D. Kotz, "Armada: A Parallel File System for Computational Grid," in
Proceedings of the IEEE International Symposium on Cluster Computing and the
Grid (CCGrid2001). Brisbane, Australia: IEEE Computer Society Press, 2001.

[23] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi,
"Ninf: A Network based Information Library for a Global World-Wide Computing
Infrastructure," in Proceedings of the Conference on High Performance Computing
and Networking (HPCN '97) (LNCS-1225), 1997, pp. 491-502.

[24] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S.
Pail, and L. Pearlman, "A Metadata Catalog Service for Data Intensive
Applications," in Proceedings of the ACM/IEEE Supercomputing Conference
(SC2003), 2003.

[25] G. Singh, E. Deelman, G. Mehta, K. Vahi, M. Su, B. Berriman, J. Good, J. Jacob, D.
Katz, A. Lazzarini, K. Blackburn, and S. Koranda, "The Pegasus Portal: Web Based
Grid Computing," in Proceedings of the 20th Annual ACM Symposium on Applied
Computing. Santa Fe, New Mexico, 2005.

[26] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. Fernandes, and R.
Sakellariou, "Distributed Query Processing on the Grid.," presented at Proceedings
of the Third Workshop on Grid Computing (GRID2002), Baltimore, MD, 2003.

 References

 181

[27] D. Thain, J. Basney, S. Son, and M. Livny, "Kangaroo Approach to Data Movement
on the Grid," in Proceedings of the Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC-10), 2001.

[28] L. Weng, G. Agrawal, U. Catalyurek, T. Kurc, S. Narayanan, and J. Saltz, "An
Approach for Automatic Data Virtualization," in Proceedings of the 13th IEEE
International Symposium on High-Performance Distributed Computing (HPDC-13).
Honolulu, Hawaii, 2004, pp. 24-33.

[29] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration," Open Grid
Service Infrastructure Working Group Technical Report, Global Grid Forum.
http://www.globus.org/alliance/publications/papers/ogsa.pdf 2002.

[30] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling
Scalable Virtual Organizations.," International Journal of Supercomputer
Applications, vol. 15, pp. 200-222, 2001.

[31] E. Cerami, Web Services Essentials: O'Reilly & Associates Inc., 2002.
[32] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and R.

Neyama, Building Web Services with Java: Making Sense of XML, SOAP, WSDL,
and UDDI: SAMS Publishing, 2002.

[33] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S. Tuecke, and W. Vambenepe, "The WS-Resource Framework version
1.0," vol. 2004, 2004.

[34] J. Saltz, S. Oster, S. Hastings, T. Kurc, W. Sanchez, M. Kher, A. Manisundaram, K.
Shanbhag, and P. Covitz, "caGrid: Design and Implementation of the Core
Architecture of the Cancer Biomedical Informatics Grid," Bioinformatics. (in press).
2006.

[35] S. Langella, S. Hastings, S. Oster, T. Kurc, U. Catalyurek, and J. Saltz, "A
Distributed Data Management Middleware for Data-Driven Application Systems," in
Proceedings of the 2004 IEEE International Conference on Cluster Computing
(Cluster 2004), 2004.

[36] K. Bhatia, S. Chandra, and K. Mueller, "GAMA: Grid Account Management
Architecture," San Diego Supercomputer Center (SDSC), UCSD Technical Report.
#TR-2005-3, 2005.

[37] I. Foster, C. Kesselman, S. Tuecke, V. Volmer, V. Welch, R. Butler, and D. Engert,
"A National Scale Authentication Infrastructure," IEEE Computer, vol. 33, pp. 60-66,
2000.

[38] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C.
Kesselman, S. Meder, L. Pearlman, and S. Tuecke, "Security for Grid Services,"
presented at 12th International Symposium on High Performance Distributed
Computing (HPDC-12), 2003.

[39] H. Morohoshi and R. Huang, "A User-friendly Platform for Developing Grid Services
over Globus Toolkit 3," presented at The 2005 11th International Conference on
Parallel and Distributed Systems (ICPADS'05), 2005.

[40] S. Mizuta and R. Huang, "Automation of Grid Service Code Generation with
AndroMDA for GT3," presented at The 19th International Conference on Advanced
Information Networking and Applications (AINA'05), 2005.

[41] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, "A Java Commodity Grid Kit,"
Concurrency and Computation: Practice and Experience, vol. 13, pp. 643-662,
2001.

[42] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, "CoG Kits: A
Bridge Between Commodity Distributed Computing and High Performance Grids,"
presented at ACM Java Grande 2000 Conference, 2000.

http://www.globus.org/alliance/publications/papers/ogsa.pdf

caGrid 1.2 User’s Guide

 182

[43] R. Buyya and S. Venugopal, "The Gridbus Toolkit for Service Oriented Grid and
Utility Computing: An Overview and Status Report," presented at the First IEEE
International Workshop on Grid Economics and Business Models (GECON 2004),
New Jersey, USA, 2004.

[44] M. Humphrey and G. Wasson, "Architectural Foundations of WSRF.NET,"
International Journal of Web Services Research, vol. 2, pp. 83-97, 2005.

[45] M. Smith, T. Friese, and B. Freisleben, "Model Driven Development of Service
Oriented Grid Applications," presented at Advanced International Conference on
Telecommunications and International Conference on Internet and Web
Applications and Services (AICT-ICIW '06), 2006.

Technical Manuals/Articles
National Cancer Institute. "caCORE SDK 3.2.1 Programmer’s Guide",
ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2.1/caCORE_SDK_3.2.1_Programmers_G
uide.pdf

National Cancer Institute. "caCORE 3.2 Technical Guide",
ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.2_Tech_Guide.pdf

Java Bean Specification: http://java.sun.com/products/javabeans/docs/spec.html

Foundations of Object-Relational Mapping:
http://www.chimu.com/publications/objectRelational/

Object-Relational Mapping articles and products:

http://www.service-architecture.com/object-relational-mapping/

Hibernate Reference Documentation:
http://www.hibernate.org/hib_docs/reference/en/html/

Basic O/R Mapping:
http://www.hibernate.org/hib_docs/reference/en/html/mapping.html

Java Programming: http://java.sun.com/learning/new2java/index.html

Javadoc tool: http://java.sun.com/j2se/javadoc/

JUnit: http://junit.sourceforge.net/

Extensible Markup Language: http://www.w3.org/TR/REC-xml/

XML Metadata Interchange:
http://www.omg.org/technology/documents/formal/xmi.htm

Global Grid Forum: http://www.gridforum.org

Globus: http://www.globus.org

Mobius: http://www.projectmobius.org

W3C: http://www.w3c.org

OGSA-DAI: http://www.ogsadai.org

Apache: http://www.apache.org

Globus Toolkit 3 Programmer's Tutorial:

http://gdp.globus.org/gt3-tutorial/singlehtml/progtutorial_0.4.3.html

ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2.1/caCORE_SDK_3.2.1_Programmers_Guide.pdf
ftp://ftp1.nci.nih.gov/pub/cacore/SDK/v3.2.1/caCORE_SDK_3.2.1_Programmers_Guide.pdf
ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.2_Tech_Guide.pdf
http://java.sun.com/products/javabeans/docs/spec.html
http://www.chimu.com/publications/objectRelational/
http://www.service-architecture.com/object-relational-mapping/
http://www.hibernate.org/hib_docs/reference/en/html/
http://www.hibernate.org/hib_docs/reference/en/html/mapping.html
http://java.sun.com/learning/new2java/index.html
http://java.sun.com/j2se/javadoc/
http://junit.sourceforge.net/
http://www.w3.org/TR/REC-xml/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.gridforum.org/
http://www.globus.org/
http://www.projectmobius.org/
http://www.w3c.org/
http://www.ogsadai.org/
http://www.apache.org/
http://gdp.globus.org/gt3-tutorial/singlehtml/progtutorial_0.4.3.html

 References

 183

XPath tutorial: http://www.w3schools.com/xpath/xpath_syntax.asp

Globus Security Overview:

http://www.ogsadai.org.uk/docs/OtherDocs/SECURITY-FOR-DUMMIES.pdf

High level Overview of Grid:

http://gridcafe.web.cern.ch/gridcafe/index.html

Overview of Globus Toolkit 3 and the OGSI architecture :

http://www-128.ibm.com/developerworks/grid/library/gr-gt3/

caBIG Material
caBIG: http://cabig.nci.nih.gov/

caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation

caCORE Material
caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure

caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

EVS: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary

CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

http://www.w3schools.com/xpath/xpath_syntax.asp
http://www.ogsadai.org.uk/docs/OtherDocs/SECURITY-FOR-DUMMIES.pdf
http://gridcafe.web.cern.ch/gridcafe/index.html
http://www-128.ibm.com/developerworks/grid/library/gr-gt3/
http://cabig.nci.nih.gov/
http://cabig.nci.nih.gov/guidelines_documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

 184

Appendix B Glossary
This glossary provides definitions for acronyms, objects, tools and other terms
related to caGrid.

Term Definition
API Application Programming Interface

Authz caGrid Authorization component

BPEL Business Process Execution Language

CA Certificate Authority

caArray cancer Array Informatics

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

caGrid Current test bed architecture of caBIG

CRL Certificate Revocation List

CSM Common Security Module

CVS Concurrent Versions System

DAO Data Access Objects

DN Distinguished Name

IdP Identity Provider

EPR End Point Reference

EVS Enterprise Vocabulary Services

GAARDS Grid Authentication and Authorization with Reliably Distributed Services

GDE Introduce Graphical Development Environment

GForge Primary site for collaborative project development for the NCI Center for
Bioinformatics (NCICB) and for the NCI's Cancer Biomedical Informatics
Grid™ (caBIG)

GGF Global Grid Forum

GME Mobius Global Model Exchange - DNS-like service for the universal
creation, versioning, and sharing of data descriptions

Grid Service Basically a Web Services with improved characteristics and standard
services like stateful and potentially transient services, Service Data,
Notifications, Service Groups, portType extension, and Lifecycle
management.

GSH Grid Service Handle

GSI Grid Security Infrastructure - represents the latest evolution of the Grid
Security Infrastructure. GSI in GT3 builds off of the functionality present in
early GT2 toolkit releases - X.509 certificates, TLS/SSL for authentication

 Glossary

 185

Term Definition
and message protection, X.509 Proxy Certificates for delegation and single
sign-on.

GTS Grid Trust Service - maintains a federated trust fabric of all the trusted
digital signers in the grid

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

JAAS Java Authentication and Authorization Service

JAR Java Archive

Javadoc Tool for generating API documentation in HTML format from doc comments
in source code (http://java.sun.com/j2se/javadoc/)

JDBC Java Database Connectivity

JUnit A simple framework to write repeatable tests (http://junit.sourceforge.net/)

LDAP Lightweight Directory Access Protocol

MAGE MicroArray and Gene Expression

MAGE-OM MicroArray Gene Expression - Object Model

Metadata Definitional data that provides information about or documentation of other
data.

MGED Microarray Gene Expression Data

Mobius An array of tools and middleware components to coherently share and
manage data and metadata in a Grid and/or distributed computing
environment.

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

OGSA Open Grid Services Architecture - developed by the Global Grid Forum,
aims to define a common, standard, and open architecture for grid-based
applications.

OGSI Open Grid Services Infrastructure -gives a formal and technical
specification of what a Grid Service is. In other words, for a high-level
architectural view of what Grid Services are, and how they fit into the next
generation of grid applications

PKI Public Key Cryptography

RDBMS Relational Database Management System

SAML Secure Access Markup Language

SDK Software Development Kit

SOAP Simple Object Access Protocol

SQL Structured Query Language

TRA Trusted Registration Authority

UI User Interface

UID User Identification

http://java.sun.com/j2se/javadoc/
http://junit.sourceforge.net/

caGrid 1.2 User’s Guide

 186

Term Definition
UML Unified Modeling Language

UPT User Provisioning Tool

URL Uniform Resource Locators

Virtualization Make a computational or data resource available to caBIG community -
some people call "Gridification"

VO Virtual Organization

WAR Web Application Archive

Web Service Application to application communication using web based service
interfaces as describe by the Web Services 1.0 or 2.0 specification.

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

WSRF Web Services Resource Framework

X.509 Certificate With its corresponding private key forms a unique credential or so-called
“grid credential” within the grid

XMI XML Metadata Interchange
(http://www.omg.org/technology/documents/formal/xmi.htm) - The main
purpose of XMI is to enable easy interchange of metadata between
modeling tools (based on the OMG-UML) and metadata repositories (OMG-
MOF) in distributed heterogeneous environments

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/) - XML is a
subset of Standard Generalized Markup Language (SGML). Its goal is to
enable generic SGML to be served, received, and processed on the Web in
the way that is now possible with HTML. XML has been designed for ease
of implementation and for interoperability with both SGML and HTML

XPath XML query/traversal language adhering to the XPath specification set forth
by the W3C.

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/REC-xml/

Index

 187

Index
Analytical service developer, 6
Ant

Dorian, 52
Grid Grouper, 107
GTS, 81

ApplicationSecurityConfig.xml, 143
Authentication management. See CSM
Authorization Management. See Authz
Authz

overview, 142
required jars, 144
setting classpath, 144

BPEL
definition, 155

caArray
client application case study, 42
definition, 42

caBIG
references, 184

caCORE
references, 184

caGrid
client APIs, 36
developing client applications, 35
related documents, 5
security infrastructure, 45
user management, 48
users and roles, 5
Workflow, 155

Certificate Revocation List, 87
Client API

discovery API, 38
EPR, 37
inspecting metadata, 40
invoking operations on service, 41
obtain EPR for service, 38
overview, 36
secure communication, 36

Client application developer, 6
Client applications

overview, 35

Common Security Module. See CSM
CSM

administration example, 146
configuring a service, 140
definition, 47
deploying to container, 140

Data service developer, 6
Data services

additional reading, 33

Discovery API, 38
DiscoveryClient, 39
Document text conventions, 2
Dorian

account creating, 50
administrating, 62

certificate creation, 50
definition, 46
host certificate creation, 51
installing and configuring, 52
registering account, 56

End Point Reference. See EPR
Enterprise Vocabulary Services, 35
EPR

definition, 37
obtaining for service, 38

Examples
caArray metadata and client API, 42
caTRIP invocation and client API, 43
client API and caArray discovery, 42
CSM administration, 146
discovering services, 39
inspecting metadata, 41

GAARDS
administration UI, 48
definition, 45
manage grid credentials, 59
manage grid proxies, 58
managing Trusted IdPs, 63

Globus
Dorian, 52
Grid Grouper, 107
GTS, 81
overview, 78
user management, 48

Globus Toolkit
software prerequisites, 52

Grid Authentication and Authorization with
Reliably Distributed Services. See
GAARDS, See GAARDS

Grid Grouper
administrating, 112
definition, 47
installing and configuring, 106
overview, 105
software prerequisites, 106
stems, 112

Grid proxy, 48
certificate creation, 51

Grid Security Infrastructure. See GSI
Grid Trust Service. See GTS
GSI

overview, 78

GTS
definition, 47
installing and configuring, 80
managing administrators, 86
overview, 76
software prerequisites, 80
synching with trust fabric, 102

Hibernate
configuring for Authz, 144

caGrid 1.2 User’s Guide

 188

hibernate.cfg.xml, 144
Install

Dorian, 52
Grid Grouper, 106
GTS, 80
Workflow test services, 156

ISO/IEC 11179, 35
Java SDK

Dorian, 52
Grid Grouper, 107
GTS, 80

Metadata
inspecting, 40

Metadata API, 40
MySQL

Dorian, 52
Grid Grouper, 107
GTS, 80

PartnerLink, 156
References

caBIG, 184
caBIG materials, 184
caCORE, 184
scientific publications, 180
technical manuals, guides, 183

SAML, 49
Secure Access Markup Language. See SAML
Security

administrating CSM, 146
administrating Dorian, 62
administrating Grid Grouper, 112
administrating GTS, 86
configuring CSM, 139
configuring Grid Grouper, 105
configuring GTS, 76
GAARDS Administration UI, 48

grid user and host management, 48
managing grid credentials, 59
overview, 45
registration authorities, 50
syncing with trust fabric, 102

Service administrator, 7
Service developer, 6
Software prerequisites

Globus, 52
Grid Grouper, 106
GTS, 80

Stem, 112
SyncGTS tool, 102
Tomcat

Dorian, 52
Grid Grouper, 107
GTS, 81

TRA, 50
Trusted Registration Authorities. See TRA
User role

analytical service developer, 6
client application developer, 6
data service developer, 6
definitions, 5
service administrator, 7
service developer, 6

Workflow
configuring, 156
creating sample, 156
installing test services, 156
overview, 155
running, 156
Workflow Submission GUI, 157

WSDL, 35
X.509 Identity Certificates, 48

